calculate coefficient of determination (R2) and root mean square error (RMSE) for non linear curve fitting in python

柔情痞子 提交于 2019-12-03 17:35:24

You could do it like this:

print "Mean Squared Error: ", np.mean((y-func(x, *popt))**2)

ss_res = np.dot((yn - func(x, *popt)),(yn - func(x, *popt)))
ymean = np.mean(yn)
ss_tot = np.dot((yn-ymean),(yn-ymean))
print "Mean R :",  1-ss_res/ss_tot

This is taking the definitions directly, as for example in the wikipedia: http://en.wikipedia.org/wiki/Coefficient_of_determination#Definitions

Martin Böschen, not y but yn here:

np.mean((y-func(x, *popt))**2)

And read this about root-mean-square error (RMSE): http://en.wikipedia.org/wiki/Regression_analysis

residuals = yn - func(x,*popt)
print "RMSE",(scipy.sum(residuals**2)/(residuals.size-2))**0.5

Now it calculates as Excel 2003 Analysis ToolPak.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!