Python pandas has no attribute ols - Error (rolling OLS)

点点圈 提交于 2019-12-03 17:24:32

pd.stats.ols.MovingOLS was removed in Pandas version 0.20.0

http://pandas-docs.github.io/pandas-docs-travis/whatsnew.html#whatsnew-0200-prior-deprecations

https://github.com/pandas-dev/pandas/pull/11898

I can't find an 'off the shelf' solution for what should be such an obvious use case as rolling regressions.

The following should do the trick without investing too much time in a more elegant solution. It uses numpy to calculate the predicted value of the regression based on the regression parameters and the X values in the rolling window.

window = 1000
a = np.array([np.nan] * len(df))
b = [np.nan] * len(df)  # If betas required.
y_ = df.y.values
x_ = df[['x']].assign(constant=1).values
for n in range(window, len(df)):
    y = y_[(n - window):n]
    X = x_[(n - window):n]
    # betas = Inverse(X'.X).X'.y
    betas = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
    y_hat = betas.dot(x_[n, :])
    a[n] = y_hat
    b[n] = betas.tolist()  # If betas required.

The code above is equivalent to the following and about 35% faster:

model = pd.stats.ols.MovingOLS(y=df.y, x=df.x, window_type='rolling', window=1000, intercept=True)
y_pandas = model.y_predict
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!