ConcurrentHashMap数据结构
ConcurrentHashMap相比HashMap而言,是多线程安全的,其底层数据与HashMap的数据结构相同,数据结构如下:

说明:ConcurrentHashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树是为了提高查找效率。
ConcurrentHashMap源码分析
1、类的继承关系
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {}
说明:ConcurrentHashMap继承了AbstractMap抽象类,该抽象类定义了一些基本操作,同时,也实现了ConcurrentMap接口,ConcurrentMap接口也定义了一系列操作,实现了Serializable接口表示ConcurrentHashMap可以被序列化。
2、类的内部类
ConcurrentHashMap包含了很多内部类,其中主要的内部类框架图如下图所示:


说明:可以看到,ConcurrentHashMap的内部类非常的庞大,第二个图是在JDK1.8下增加的类,下面对其中主要的内部类进行分析和讲解。
1. Node类
Node类主要用于存储具体键值对,其子类有ForwardingNode、ReservationNode、TreeNode和TreeBin四个子类。四个子类具体的代码在之后的具体例子中进行分析讲解。
2. Traverser类
Traverser类主要用于遍历操作,其子类有BaseIterator、KeySpliterator、ValueSpliterator、EntrySpliterator四个类,BaseIterator用于遍历操作。KeySplitertor、ValueSpliterator、EntrySpliterator则用于键、值、键值对的划分。
3. CollectionView类
CollectionView抽象类主要定义了视图操作,其子类KeySetView、ValueSetView、EntrySetView分别表示键视图、值视图、键值对视图。对视图均可以进行操作。
4. Segment类
Segment类在JDK1.8中与之前的版本的JDK作用存在很大的差别,JDK1.8下,其在普通的ConcurrentHashMap操作中已经没有失效,其在序列化与反序列化的时候会发挥作用。
5. CounterCell
CounterCell类主要用于对baseCount的计数。
3 、类的属性
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {
private static final long serialVersionUID = 7249069246763182397L;
// 表的最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认表的大小
private static final int DEFAULT_CAPACITY = 16;
// 最大数组大小
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
// 默认并发数
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 装载因子
private static final float LOAD_FACTOR = 0.75f;
// 转化为红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;
// 由红黑树转化为链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
// 转化为红黑树的表的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 每次进行转移的最小值
private static final int MIN_TRANSFER_STRIDE = 16;
// 生成sizeCtl所使用的bit位数
private static int RESIZE_STAMP_BITS = 16;
// 进行扩容所允许的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 记录sizeCtl中的大小所需要进行的偏移位数
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// 一系列的标识
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
//
/** Number of CPUS, to place bounds on some sizings */
// 获取可用的CPU个数
static final int NCPU = Runtime.getRuntime().availableProcessors();
//
/** For serialization compatibility. */
// 进行序列化的属性
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("segments", Segment[].class),
new ObjectStreamField("segmentMask", Integer.TYPE),
new ObjectStreamField("segmentShift", Integer.TYPE)
};
// 表
transient volatile Node<K,V>[] table;
// 下一个表
private transient volatile Node<K,V>[] nextTable;
//
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
// 基本计数
private transient volatile long baseCount;
//
/**
* Table initialization and resizing control. When negative, the
* table is being initialized or resized: -1 for initialization,
* else -(1 + the number of active resizing threads). Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or 0 for default. After initialization, holds the
* next element count value upon which to resize the table.
*/
// 对表初始化和扩容控制
private transient volatile int sizeCtl;
/**
* The next table index (plus one) to split while resizing.
*/
// 扩容下另一个表的索引
private transient volatile int transferIndex;
/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
// 旋转锁
private transient volatile int cellsBusy;
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
// counterCell表
private transient volatile CounterCell[] counterCells;
// views
// 视图
private transient KeySetView<K,V> keySet;
private transient ValuesView<K,V> values;
private transient EntrySetView<K,V> entrySet;
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentHashMap.class;
SIZECTL = U.objectFieldOffset
(k.getDeclaredField("sizeCtl"));
TRANSFERINDEX = U.objectFieldOffset
(k.getDeclaredField("transferIndex"));
BASECOUNT = U.objectFieldOffset
(k.getDeclaredField("baseCount"));
CELLSBUSY = U.objectFieldOffset
(k.getDeclaredField("cellsBusy"));
Class<?> ck = CounterCell.class;
CELLVALUE = U.objectFieldOffset
(ck.getDeclaredField("value"));
Class<?> ak = Node[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}
}
说明:ConcurrentHashMap的属性很多,其中不少属性在HashMap中就已经介绍过,而对于ConcurrentHashMap而言,添加了Unsafe实例,主要用于反射获取对象相应的字段。
4 、类的构造函数
1. ConcurrentHashMap()型构造函数
public ConcurrentHashMap() {}
说明:该构造函数用于创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
2. ConcurrentHashMap(int)型构造函数
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0) // 初始容量小于0,抛出异常
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); // 找到最接近该容量的2的幂次方数
// 初始化
this.sizeCtl = cap;
}