Use curved lines in bumps chart

懵懂的女人 提交于 2019-12-03 15:20:27

问题


I'm trying to make a bumps chart (like parallel coordinates but with an ordinal x-axis) to show ranking over time. I can make a straight-line chart very easily:

library(ggplot2)
set.seed(47)

df <- as.data.frame(as.table(replicate(8, sample(4))), responseName = 'rank')
df$Var2 <- as.integer(df$Var2)

head(df)
#>   Var1 Var2 rank
#> 1    A    1    4
#> 2    B    1    2
#> 3    C    1    3
#> 4    D    1    1
#> 5    A    2    3
#> 6    B    2    4

ggplot(df, aes(Var2, rank, color = Var1)) + geom_line() + geom_point()

Wonderful. Now, though, I want to make the connecting lines curved. Despite never having more than one y per x, geom_smooth offers some possibilities. loess seems like it should work, as it can ignore points except the closest. However, even with tweaking the best I can get still misses lots of points and overshoots others where it should be flat:

ggplot(df, aes(Var2, rank, color = Var1)) + 
    geom_smooth(method = 'loess', span = .7, se = FALSE) + 
    geom_point()

I've tried a number of other splines, like ggalt::geom_xspline, but they all still overshoot or miss the points:

ggplot(df, aes(Var2, rank, color = Var1)) + ggalt::geom_xspline() + geom_point()

Is there an easy way to curve these lines? Do I need to build my own sigmoidal spline? To clarify, I'm looking for something like D3.js's d3.curveMonotoneX which hits every point and whose local maxima and minima do not exceed the y values:

Ideally it would probably have a slope of 0 at each point, too, but that's not absolutely necessary.


回答1:


Using signal::pchip with a grid of X-values works, at least in your example with numeric axes. A proper geom_ would be nice, but hey...

library(tidyverse)
library(signal)
set.seed(47)

df <- as.data.frame(as.table(replicate(8, sample(4))), responseName = 'rank')
df$Var2 <- as.integer(df$Var2)

head(df)
#>   Var1 Var2 rank
#> 1    A    1    4
#> 2    B    1    2
#> 3    C    1    3
#> 4    D    1    1
#> 5    A    2    3
#> 6    B    2    4

ggplot(df, aes(Var2, rank, color = Var1)) +
  geom_line(data = df %>%
              group_by(Var1) %>%
              do({
                tibble(Var2 = seq(min(.$Var2), max(.$Var2),length.out=100),
                       rank = pchip(.$Var2, .$rank, Var2))
              })) +
  geom_point()

Result:




回答2:


Building on Henrik's answer, this wraps up pchip (I'm using the one from pracma here but the result is the same) so it can be used alongside existing smooth methods more easily:

ggpchip = function(formula, data, weights) structure(pracma::pchipfun(data$x, data$y), class='ggpchip')
predict.ggpchip = function(object, newdata, se.fit=F, ...) {
  fit = unclass(object)(newdata$x)
  if (se.fit) list(fit=data.frame(fit, lwr=fit, upr=fit), se.fit=fit * 0) else fit
}

Then the actual ggplot call is straightforward:

ggplot(df, aes(Var2, rank, color=Var1)) + geom_smooth(method='ggpchip', se=F) + geom_point()

You can then use pchip to smooth other geoms, eg area plots:

ggplot(df, aes(Var2, rank, fill=Var1)) + stat_smooth(method='ggpchip', geom='area', position='fill')


来源:https://stackoverflow.com/questions/43771900/use-curved-lines-in-bumps-chart

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!