How to extract feature importances from an Sklearn pipeline

為{幸葍}努か 提交于 2019-12-03 12:59:24

Ah, yes it is.

You list identify the step where you want to check the estimator:

For instance:

pipeline.steps[1]

Which returns:

('predictor',
 RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
             max_depth=None, max_features='auto', max_leaf_nodes=None,
             min_samples_leaf=1, min_samples_split=2,
             min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=2,
             oob_score=False, random_state=None, verbose=0,
             warm_start=False))

You can then access the model step directly:

pipeline.steps[1][1].feature_importances_

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!