How does glmnet compute the maximal lambda value?

帅比萌擦擦* 提交于 2019-12-03 12:49:24

问题


The glmnet package uses a range of LASSO tuning parameters lambda scaled from the maximal lambda_max under which no predictors are selected. I want to find out how glmnet computes this lambda_max value. For example, in a trivial dataset:

set.seed(1)
library("glmnet")
x <- matrix(rnorm(100*20),100,20)
y <- rnorm(100)
fitGLM <- glmnet(x,y)
max(fitGLM$lambda)
# 0.1975946

The package vignette (http://www.jstatsoft.org/v33/i01/paper) describes in section 2.5 that it computes this value as follows:

sx <- as.matrix(scale(x))
sy <- as.vector(scale(y))
max(abs(colSums(sx*sy)))/100
# 0.1865232

Which clearly is close but not the same value. So, what causes this difference? And in a related question, how could I compute lambda_max for a logistic regression?


回答1:


To get the same result you need to standardize the variables using a standard deviation with n instead of n-1 denominator.

mysd <- function(y) sqrt(sum((y-mean(y))^2)/length(y))
sx <- scale(x,scale=apply(x, 2, mysd))
sx <- as.matrix(sx, ncol=20, nrow=100)
sy <- as.vector(scale(y, scale=mysd(y)))
max(abs(colSums(sx*sy)))/100
## [1] 0.1758808
fitGLM <- glmnet(sx,sy)
max(fitGLM$lambda)
## [1] 0.1758808



回答2:


It seems lambda_max for a logistic regression is calculated similarly, with weights based on class proportions:

set.seed(1)
library("glmnet")
x <- matrix(rnorm(100*20),100,20)
y <- rnorm(100)

mysd <- function(y) sqrt(sum((y-mean(y))^2)/length(y))
sx <- scale(x, scale=apply(x, 2, mysd))
sx <- as.matrix(sx, ncol=20, nrow=100)

y_bin <- factor(ifelse(y<0, -1, 1))
prop.table(table(y_bin)) 
# y_bin
#   -1    1 
# 0.62 0.38 
fitGLM_log <- glmnet(sx, y_bin, family = "binomial")
max(fitGLM_log$lambda)
# [1] 0.1214006
max(abs(colSums(sx*ifelse(y<0, -.38, .62))))/100
# [1] 0.1214006



回答3:


For your second question, look to Friedman et al's paper, "Regularization paths for generalized linear models via coordinate descent". In particular, see equation (10), which is equality at equilibrium. Just check under what conditions the numerator $S(\cdot,\cdot)$ is zero for all parameters.




回答4:


According to help("glmnet") the maximal lambda value is "the smallest value for which all coefficients are zero":

sum(fitGLM$beta[, which.max(fitGLM$lambda)])
#[1] 0
sum(glmnet(x,y, lambda=max(fitGLM$lambda)*0.999)$beta)
#[1] -0.0001809804

At a quick glance the value seems to be calculated by the Fortran code called by elnet.



来源:https://stackoverflow.com/questions/25257780/how-does-glmnet-compute-the-maximal-lambda-value

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!