问题
Threading-wise, what's the difference between web workers and functions declared as
async function xxx()
{
}
?
I am aware web workers are executed on separate threads, but what about async functions? Are such functions threaded in the same way as a function executed through setInterval is, or are they subject to yet another different kind of threading?
回答1:
Async
functions are just syntactic sugar around Promises
and they are wrappers for Callbacks
. So basically, when you await
something the JS-engine continues with other things until the callback
you are waiting for calls back.
Whether another thread is involved depends on what you are awaiting in the async
function. If it is a timer (setTimeout
), an internal timer is set and the JS-thread continues with other stuff until the timer is done and then it continues the execution.
This behaviour is somewhat the same with every function taking a callback or returning a promise
. However some of them, especially in the Node.js environment (fetch
, fs.readFile
) will start another thread internally. You only hand over some arguments and receive the results when the thread is done. With WebWorkers
however, you control another thread directly. For shure you can await
actions from that other thread too:
const workerDone = new Promise(res => window.onmessage = res);
(async function(){
const result = await workerDone;
//...
})();
TL;DR:
JS <---> callbacks / promises <--> internal Thread / Webworker
回答2:
In contrast to WebWorkers
, async
functions are never guaranteed to be executed on a separate thread.
They just don't block the whole thread until their response arrives. You can think of them as being registered as waiting for a result, let other code execute and when their response comes through they get executed; hence the name asynchronous programming.
This is achieved through a message queue, which is a list of messages to be processed. Each message has an associated function which gets called in order to handle the message.
Doing this:
setTimeout(() => {
console.log('foo')
}, 1000)
will simply add the callback function (that logs to the console) to the message queue. When it's 1000ms timer elapses, the message is popped from the message queue and executed.
While the timer is ticking, other code is free to execute. This is what gives the illusion of multithreading.
The setTimeout
example above uses callbacks. Promises
and async
work the same way at a lower level — they piggyback on that message-queue concept, but are just syntactically different.
回答3:
Workers are also accessed by asynchronous code (i.e. Promises) however Workers are a solution to the CPU intensive tasks which would block the thread that the JS code is being run on; even if this CPU intensive function is invoked asynchronously.
So if you have a CPU intensive function like renderThread(duration)
and if you do like
new Promise((v,x) => setTimeout(_ => (renderThread(500), v(1)),0)
.then(v => console.log(v);
new Promise((v,x) => setTimeout(_ => (renderThread(100), v(2)),0)
.then(v => console.log(v);
Even if second one takes less time to complete it will only be invoked after the first one releases the CPU thread. So we will get first 1
and then 2
on console.
However had these two function been run on separate Workers, then the outcome we expect would be 2
and 1
as then they could run concurrently and the second one finishes and returns a message earlier.
So for basic IO operations standard single threaded asynchronous code is very efficient and the need for Workers arises from need of using tasks which are CPU intensive and can be segmented (assigned to multiple Workers at once) such as FFT and whatnot.
回答4:
Async functions have nothing to do with web workers or node child processes - unlike those, they are not a solution for parallel processing on multiple threads.
An async function
is just1 syntactic sugar for a function returning a promise then()
chain.
async function example() {
await delay(1000);
console.log("waited.");
}
is just the same as
function example() {
return Promise.resolve(delay(1000)).then(() => {
console.log("waited.");
});
}
These two are virtually indistinguishable in their behaviour. The semantics of await
or a specified in terms of promises, and every async function
does return a promise for its result.
1: The syntactic sugar gets a bit more elaborate in the presence of control structures such as if
/else
or loops which are much harder to express as a linear promise chain, but it's still conceptually the same.
Are such functions threaded in the same way as a function executed through
setInterval
is?
Yes, the asynchronous parts of async function
s run as (promise) callbacks on the standard event loop. The delay
in the example above would implemented with the normal setTimeout
- wrapped in a promise for easy consumption:
function delay(t) {
return new Promise(resolve => {
setTimeout(resolve, t);
});
}
回答5:
I want to add my own answer to my question, with the understanding I gathered through all the other people's answers:
Ultimately, all but web workers, are glorified callbacks. Code in async functions, functions called through promises, functions called through setInterval and such - all get executed in the main thread with a mechanism akin to context switching. No parallelism exists at all.
True parallel execution with all its advantages and pitfalls, pertains to webworkers and webworkers alone.
(pity - I thought with "async functions" we finally got streamlined and "inline" threading)
回答6:
Here is a way to call standard functions as workers, enabling true parallelism. It's an unholy hack written in blood with help from satan, and probably there are a ton of browser quirks that can break it, but as far as I can tell it works.
[constraints: the function header has to be as simple as function f(a,b,c) and if there's any result, it has to go through a return statement]
function Async(func, params, callback)
{
// ACQUIRE ORIGINAL FUNCTION'S CODE
var text = func.toString();
// EXTRACT ARGUMENTS
var args = text.slice(text.indexOf("(") + 1, text.indexOf(")"));
args = args.split(",");
for(arg of args) arg = arg.trim();
// ALTER FUNCTION'S CODE:
// 1) DECLARE ARGUMENTS AS VARIABLES
// 2) REPLACE RETURN STATEMENTS WITH THREAD POSTMESSAGE AND TERMINATION
var body = text.slice(text.indexOf("{") + 1, text.lastIndexOf("}"));
for(var i = 0, c = params.length; i<c; i++) body = "var " + args[i] + " = " + JSON.stringify(params[i]) + ";" + body;
body = body + " self.close();";
body = body.replace(/return\s+([^;]*);/g, 'self.postMessage($1); self.close();');
// CREATE THE WORKER FROM FUNCTION'S ALTERED CODE
var code = URL.createObjectURL(new Blob([body], {type:"text/javascript"}));
var thread = new Worker(code);
// WHEN THE WORKER SENDS BACK A RESULT, CALLBACK AND TERMINATE THE THREAD
thread.onmessage =
function(result)
{
if(callback) callback(result.data);
thread.terminate();
}
}
So, assuming you have this potentially cpu intensive function...
function HeavyWorkload(nx, ny)
{
var data = [];
for(var x = 0; x < nx; x++)
{
data[x] = [];
for(var y = 0; y < ny; y++)
{
data[x][y] = Math.random();
}
}
return data;
}
...you can now call it like this:
Async(HeavyWorkload, [1000, 1000],
function(result)
{
console.log(result);
}
);
来源:https://stackoverflow.com/questions/49092985/difference-between-javascript-async-functions-and-web-workers