Differences in centrality measures between igraph and tnet

徘徊边缘 提交于 2019-12-03 09:59:07

问题


I'm trying to obtain centrality measures for a directed, weighted network. I've been using the igraph and tnet packages in R. However, I've discovered some differences in the results obtained using these two packages, and I'm a little confused about the cause of these differences. See below.

require(igraph)
require(tnet)
set.seed(1234)

m <- expand.grid(from = 1:4, to = 1:4)
m <- m[m$from != m$to, ]
m$weight <- sample(1:7, 12, replace = T)
igraph_g <- graph.data.frame(m)
tnet_g <- as.tnet(m)

closeness(igraph_g, mode = "in")

         2          3          4          1 
0.05882353 0.12500000 0.07692308 0.09090909 

closeness(igraph_g, mode = "out")

         2          3          4          1 
0.12500000 0.06250000 0.06666667 0.10000000 

closeness(igraph_g, mode = "total")

         2          3          4          1 
0.12500000 0.14285714 0.07692308 0.16666667 


closeness_w(tnet_g, directed = T, alpha = 1)

     node closeness n.closeness
[1,]    1 0.2721088  0.09070295
[2,]    2 0.2448980  0.08163265
[3,]    3 0.4130809  0.13769363
[4,]    4 0.4081633  0.13605442

Anybody know what's going on?


回答1:


After posting this question, I stumbled upon a blog maintained by Tore Opsahl, maintainer of of the tnet package. I asked this same question of Tore using the comments on this post of the blog. Here is Tore's response:

Thank you for using tnet! igraph is able to handle weights; however, the distance function in igraph expects weights that represent 'costs' instead of 'strength'. In other words, the tie weight is considered the amount of energy needed to cross a tie. See Shortest Paths in Weighted Networks.

Thus, if you run the following code provided by Tore (which takes the inverse of the weights before passing them to igraph), you obtain equivalent closeness scores for both tnet and igraph.

> # Load packages
> library(tnet)
>   
> # Create random network (you could also use the rg_w-function)
> m <- expand.grid(from = 1:4, to = 1:4)
> m <- m[m$from != m$to, ]
> m$weight <- sample(1:7, 12, replace = T)
>   
> # Make tnet object and calculate closeness
> closeness_w(m)

     node closeness n.closeness
[1,]    1 0.2193116  0.07310387
[2,]    2 0.3809524  0.12698413
[3,]    3 0.2825746  0.09419152
[4,]    4 0.3339518  0.11131725

>   
> # igraph
> # Invert weights (transform into costs from strengths)
> # Multiply weights by mean (just scaling, not really)
> m$weight <- mean(m$weight)/m$weight
> # Transform into igraph object
> igraph_g <- graph.data.frame(m)
> # Compute closeness
> closeness(igraph_g, mode = "out")

        2         3         4         1 
0.3809524 0.2825746 0.3339518 0.2193116


来源:https://stackoverflow.com/questions/20388087/differences-in-centrality-measures-between-igraph-and-tnet

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!