sklearn metrics.log_loss is positive vs. scoring 'neg_log_loss' is negative

吃可爱长大的小学妹 提交于 2019-12-03 06:11:16
Marcus V.

The sklearn.metrics.log_loss is an implementation of the error metric as typically defined, and which is as most error metrics a positive number. In this case, it is a metric which is generally minimized (e.g. as mean squared error for regression), in contrast to metrics such as accuracy which is maximized.

The neg_log_loss is hence a technicality to create a utility value, which allows optimizing functions and classes of sklearn to maximize this utility without having to change the function's behavior for each metric (such include for instance named cross_val_score, GridSearchCV, RandomizedSearchCV, and others).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!