How does glmnet compute the maximal lambda value?

末鹿安然 提交于 2019-12-03 03:54:18
Gaby Cohen

To get the same result you need to standardize the variables using a standard deviation with n instead of n-1 denominator.

mysd <- function(y) sqrt(sum((y-mean(y))^2)/length(y))
sx <- scale(x,scale=apply(x, 2, mysd))
sx <- as.matrix(sx, ncol=20, nrow=100)
sy <- as.vector(scale(y, scale=mysd(y)))
max(abs(colSums(sx*sy)))/100
## [1] 0.1758808
fitGLM <- glmnet(sx,sy)
max(fitGLM$lambda)
## [1] 0.1758808

It seems lambda_max for a logistic regression is calculated similarly, with weights based on class proportions:

set.seed(1)
library("glmnet")
x <- matrix(rnorm(100*20),100,20)
y <- rnorm(100)

mysd <- function(y) sqrt(sum((y-mean(y))^2)/length(y))
sx <- scale(x, scale=apply(x, 2, mysd))
sx <- as.matrix(sx, ncol=20, nrow=100)

y_bin <- factor(ifelse(y<0, -1, 1))
prop.table(table(y_bin)) 
# y_bin
#   -1    1 
# 0.62 0.38 
fitGLM_log <- glmnet(sx, y_bin, family = "binomial")
max(fitGLM_log$lambda)
# [1] 0.1214006
max(abs(colSums(sx*ifelse(y<0, -.38, .62))))/100
# [1] 0.1214006

For your second question, look to Friedman et al's paper, "Regularization paths for generalized linear models via coordinate descent". In particular, see equation (10), which is equality at equilibrium. Just check under what conditions the numerator $S(\cdot,\cdot)$ is zero for all parameters.

According to help("glmnet") the maximal lambda value is "the smallest value for which all coefficients are zero":

sum(fitGLM$beta[, which.max(fitGLM$lambda)])
#[1] 0
sum(glmnet(x,y, lambda=max(fitGLM$lambda)*0.999)$beta)
#[1] -0.0001809804

At a quick glance the value seems to be calculated by the Fortran code called by elnet.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!