Feature preprocessing of both continuous and categorical variables (of integer type) with scikit-learn

纵饮孤独 提交于 2019-12-03 03:01:39
user1808924

Check out the sklearn_pandas.DataFrameMapper meta-transformer. Use it as the first step in your pipeline to perform column-wise data engineering operations:

mapper = DataFrameMapper(
  [(continuous_col, StandardScaler()) for continuous_col in continuous_cols] +
  [(categorical_col, LabelBinarizer()) for categorical_col in categorical_cols]
)
pipeline = Pipeline(
  [("mapper", mapper),
  ("estimator", estimator)]
)
pipeline.fit_transform(df, df["y"])

Also, you should be using sklearn.preprocessing.LabelBinarizer instead of a list of [LabelEncoder(), OneHotEncoder()].

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!