Custom metric (hmeasure) for summaryFunction caret classification

走远了吗. 提交于 2019-12-03 00:47:06

This code works. I m posting a solution in case anyone else wants to use/improve upon this. The problems were caused by incorrect referencing of the Hmeasure object and a typo/comment on the returned value of the function.

library(caret)
library(doMC)
library(hmeasure)
library(mlbench)

set.seed(825)
registerDoMC(cores = 4)

data(Sonar)
table(Sonar$Class) 

inTraining <- createDataPartition(Sonar$Class, p = 0.5, list = FALSE)
training <- Sonar[inTraining, ]
testing <- Sonar[-inTraining, ]

hmeasureCaret<-function (data, lev = NULL, model = NULL,...) 
{ 
  # adaptation of twoClassSummary
  require(hmeasure)
  if (!all(levels(data[, "pred"]) == levels(data[, "obs"]))) 
    stop("levels of observed and predicted data do not match")
  hObject <- try(hmeasure::HMeasure(data$obs, data[, lev[1]]),silent=TRUE)
  hmeasH <- if (class(hObject)[1] == "try-error") {
    NA
  } else {hObject$metrics[[1]]  #hObject$metrics[c('H')] returns a dataframe, need to return a vector 
  }
  out<-hmeasH 
  names(out) <- c("Hmeas")
  out 
}
#environment(hmeasureCaret) <- asNamespace('caret')


ctrl <- trainControl(method = "repeatedcv",number = 10, repeats = 5, summaryFunction = hmeasureCaret,classProbs=TRUE,allowParallel = TRUE,
                     verboseIter=FALSE,returnData=FALSE,savePredictions=FALSE)
set.seed(123)

svmTune <- train(Class ~ ., data = training,method = "svmRadial",trControl = ctrl,preProc = c("center", "scale"),tuneLength = 15,metric="Hmeas",
                 verbose = FALSE)
svmTune

predictedProbs <- predict(svmTune, newdata = testing , type = "prob")

true.class<-testing$Class

hmeas.check<- HMeasure(true.class,predictedProbs[,2])

summary(hmeas.check)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!