Elementwise matrix multiplication: R versus Rcpp (How to speed this code up?)

强颜欢笑 提交于 2019-12-02 21:19:51

If you want to speed up your calculations you will have to be a little careful about not making copies. This usually means sacrificing readability. Here is a version which makes no copies and modifies matrix X inplace.

// [[Rcpp::export]]
NumericMatrix Rcpp_matvecprod_elwise(NumericMatrix & X, NumericVector & y){
  unsigned int ncol = X.ncol();
  unsigned int nrow = X.nrow();
  int counter = 0;
  for (unsigned int j=0; j<ncol; j++) {
    for (unsigned int i=0; i<nrow; i++)  {
      X[counter++] *= y[i];
    }
  }
  return X;
}

Here is what I get on my machine

 > library(microbenchmark)
 > microbenchmark(R=R_matvecprod_elwise(X, e), Arma=A_matvecprod_elwise(X, e),  Rcpp=Rcpp_matvecprod_elwise(X, e))

Unit: milliseconds
 expr       min        lq    median       uq      max neval
    R  8.262845  9.386214 10.542599 11.53498 12.77650   100
 Arma 18.852685 19.872929 22.782958 26.35522 83.93213   100
 Rcpp  6.391219  6.640780  6.940111  7.32773  7.72021   100

> all.equal(R_matvecprod_elwise(X, e), Rcpp_matvecprod_elwise(X, e))
[1] TRUE

For starters, I'd write the Armadillo version (interface) as

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
arama::mat A_matvecprod_elwise(const arma::mat & X, const arma::vec & y){
  int k = X.n_cols ;
  arma::mat Y = repmat(y, 1, k) ;  // 
  arma::mat out = X % Y;  
  return out;
}

as you're doing an additional conversion in and out (though the wrap() gets added by the glue code). The const & is notional (as you learned via your last question, a SEXP is a pointer object that is lightweight to copy) but better style.

You didn't show your benchmark results so I can't comment on the effect of matrix size etc pp. I suspect you might get better answers on rcpp-devel than here. Your pick.

Edit: If you really want something cheap and fast, I would just do this:

// [[Rcpp::export]]
mat cheapHadamard(mat X, vec y) {
    // should row dim of X versus length of Y here
    for (unsigned int i=0; i<y.n_elem; i++) X.row(i) *= y(i);
    return X;
}

which allocates no new memory and will hence be faster, and probably be competitive with R.

Test output:

R> cheapHadamard(testmat, testvec)
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    4   10   16
[3,]    9   18   27
R> 

My apologies for giving an essentially C answer to a C++ question, but as has been suggested the solution generally lies in the efficient BLAS implementation of things. Unfortunately, BLAS itself lacks a Hadamard multiply so you would have to implement your own.

Here is a pure Rcpp implementation that basically calls C code. If you want to make it proper C++, the worker function can be templated but for most applications using R that isn't a concern. Note that this also operates "in-place", which means that it modifies X without copying it.

// it may be necessary on your system to uncomment one of the following
//#define restrict __restrict__ // gcc/clang
//#define restrict __restrict   // MS Visual Studio
//#define restrict              // remove it completely

#include <Rcpp.h>
using namespace Rcpp;

#include <cstdlib>
using std::size_t;

void hadamardMultiplyMatrixByVectorInPlace(double* restrict x,
                                           size_t numRows, size_t numCols,
                                           const double* restrict y)
{
  if (numRows == 0 || numCols == 0) return;

  for (size_t col = 0; col < numCols; ++col) {
    double* restrict x_col = x + col * numRows;

    for (size_t row = 0; row < numRows; ++row) {
      x_col[row] *= y[row];
    }
  }
}

// [[Rcpp::export]]
NumericMatrix C_matvecprod_elwise_inplace(NumericMatrix& X,
                                          const NumericVector& y)
{
  // do some dimension checking here

  hadamardMultiplyMatrixByVectorInPlace(X.begin(), X.nrow(), X.ncol(),
                                        y.begin());

  return X;
}

Here is a version that makes a copy first. I don't know Rcpp well enough to do this natively and not incur a substantial performance hit. Creating and returning a NumericMatrix(numRows, numCols) on the stack causes the code to run about 30% slower.

#include <Rcpp.h>
using namespace Rcpp;

#include <cstdlib>
using std::size_t;

#include <R.h>
#include <Rdefines.h>

void hadamardMultiplyMatrixByVector(const double* restrict x,
                                    size_t numRows, size_t numCols,
                                    const double* restrict y,
                                    double* restrict z)
{
  if (numRows == 0 || numCols == 0) return;

  for (size_t col = 0; col < numCols; ++col) {
    const double* restrict x_col = x + col * numRows;
    double* restrict z_col = z + col * numRows;

    for (size_t row = 0; row < numRows; ++row) {
      z_col[row] = x_col[row] * y[row];
    }
  }
}

// [[Rcpp::export]]
SEXP C_matvecprod_elwise(const NumericMatrix& X, const NumericVector& y)
{
  size_t numRows = X.nrow();
  size_t numCols = X.ncol();

  // do some dimension checking here

  SEXP Z = PROTECT(Rf_allocVector(REALSXP, (int) (numRows * numCols)));
  SEXP dimsExpr = PROTECT(Rf_allocVector(INTSXP, 2));
  int* dims = INTEGER(dimsExpr);
  dims[0] = (int) numRows;
  dims[1] = (int) numCols;
  Rf_setAttrib(Z, R_DimSymbol, dimsExpr);

  hadamardMultiplyMatrixByVector(X.begin(), X.nrow(), X.ncol(), y.begin(), REAL(Z));

  UNPROTECT(2);

  return Z;
}

If you're curious about usage of restrict, it means that you as the programmer enter a contract with the compiler that different bits of memory do not overlap, allowing the compiler to make certain optimizations. The restrict keyword is part of C++11 (and C99), but many compilers added extensions to C++ for earlier standards.

Some R code to benchmark:

require(rbenchmark)

n <- 50000
k <- 50
X <- matrix(rnorm(n*k), nrow=n)
e <- rnorm(n)

R_matvecprod_elwise <- function(mat, vec) mat*vec

all.equal(R_matvecprod_elwise(X, e), C_matvecprod_elwise(X, e))
X_dup <- X + 0
all.equal(R_matvecprod_elwise(X, e), C_matvecprod_elwise_inplace(X_dup, e))

benchmark(R_matvecprod_elwise(X, e),
          C_matvecprod_elwise(X, e),
          C_matvecprod_elwise_inplace(X, e),
          columns = c("test", "replications", "elapsed", "relative"),
          order = "relative", replications = 1000)

And the results:

                               test replications elapsed relative
3 C_matvecprod_elwise_inplace(X, e)         1000   3.317    1.000
2         C_matvecprod_elwise(X, e)         1000   7.174    2.163
1         R_matvecprod_elwise(X, e)         1000  10.670    3.217

Finally, the in-place version may actually be faster, as the repeated multiplications into the same matrix can cause some overflow mayhem.

Edit:

Removed the loop unrolling, as it provided no benefit and was otherwise distracting.

I'd like to build on Sameer's answer, but I don't have enough reputation to comment.

I personally got better performance (about 50%) in Eigen using:

return (y.asDiagonal() * X);

Despite the appearance, this does not create an n x n temporary for y.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!