Need some help understanding transient properties in Core Data

空扰寡人 提交于 2019-12-02 18:23:14

The advantage of transient properties comes from the difference between modeled/observed properties and unmodeled/unobserved properties.

The managed object context uses key-value observing (KVO) to monitor modeled properties. Based on the information provided in the data model, it knows what properties must have values, what default, minimum and max values are, when the property is changed and, most importantly, whether the managed object has a key name for a property. All this provides the "managed" part of managed objects.

Modeled properties do not require a custom NSManagedObject subclass but can use a generic NSManagedObject instance initialized to an entity. Accessing a modeled property of a fault (see below) causes the fault to load fully.

The managed object context doesn't observe unmodeled properties and unmodeled properties require a custom NSManagedObject subclass. The unmodeled properties are attributes of the class only and do not show up in the entity and they are never persisted in Core Data. Changes to unmodeled properties go unnoticed by the context.

Faults are placeholder objects that define an object graph with relationships but don't load attribute values. You can think of them as "ghost" objects. They will log as instances of either an NSManagedObject or of a private _NSFault... class. If it is a NSManagedObject the attributes are all empty. When a fault "fires" or is "faulted in" the placeholder object is replaced with a fully populated NSManagedObject instance whose attributes can be read.

Because unmodeled properties are only attributes of the custom NSManagedObject subclass and not the entity, the fault objects know nothing about them. Fault objects are initialized from the data model so that all the keys they respond to must be in the data model. This means faults will not reliably respond to request for unmodeled properties.

Transient properties fix this problem. The transient property provides a key that the context can observe without saving. If you have a fault, sending it a key-value message for a tangent property will trigger the context to "fire" the fault and load the complete managed object.

It is important to note that although the data model has a key name for a transient property, the property only has a value when the managed object is fully instantiated and loaded. This means that when you do any fetches, which operate solely in the persistent store, the tangent properties will have no values.

In your case, you want to use a transient property for grid if the value of grid depends on the values of any modeled properties of the Board class. That is the only way to guarantee force Core Data to guarantee that grid will always be populated when you access it.

[Edit: That last is highly theoretical. Using a transient property ensures that Core Data tracks the property such that the accessing the property will cause a fault to fire and provide the data. However, in practice accessing any modeled property will reliably fire the fault and unmodeled methods are always available (see below.)

You can also use:

+[NSManagedObject contextShouldIgnoreUnmodeledPropertyChanges:]

… to force a context to watch unmodeled properties. However, that can cause unanticipated and unmanaged behavior if the unmodeled properties have side effects.

I think that it is good practice to use transient properties whenever possible to make sure everything is covered.]

Update:

Okay, but what if I have an instance method that's not a property accessor, like doSomething above? How do I make sure I have a real object before I call it?

I think you're over thinking this and my cumbersome explanation didn't help any.

Core Data manages all these issues for you. I've been using Core Data as long as there has been a Core Data and I have never run into any problems. Core Data wouldn't be much use if you had to constantly stop and check if the objects were faults or not.

For example, I set up a simple model with classes like so:

Alpha:

@class Beta;

@interface Alpha : NSManagedObject {
@private
}
@property (nonatomic, retain) NSNumber * num;
@property (nonatomic, retain) NSString * aString;
@property (nonatomic, retain) NSSet *betas;

-(NSString *) unmodeledMethod;
@end

@interface Alpha (CoreDataGeneratedAccessors)

- (void)addBetasObject:(Beta *)value;
- (void)removeBetasObject:(Beta *)value;
- (void)addBetas:(NSSet *)values;
- (void)removeBetas:(NSSet *)values;

@end 

@implementation Alpha
@dynamic num;
@dynamic aString;
@dynamic betas;

-(NSString *) unmodeledMethod{
  return @"Alpha class unmodeledMethod return value";
}
@end

Beta:

@class Alpha;

@interface Beta : NSManagedObject {
@private
}
@property (nonatomic, retain) NSNumber * num;
@property (nonatomic, retain) NSSet *alphas;
-(NSString *) unmodeledMethod;
-(NSString *) accessModeledProperty;

@end

@interface Beta (CoreDataGeneratedAccessors)

- (void)addAlphasObject:(Alpha *)value;
- (void)removeAlphasObject:(Alpha *)value;
- (void)addAlphas:(NSSet *)values;
- (void)removeAlphas:(NSSet *)values;

@end
@implementation Beta
@dynamic num;
@dynamic alphas;

-(NSString *) unmodeledMethod{
  return [NSString stringWithFormat:@"%@ isFault=%@", self, [self isFault] ? @"YES":@"NO"];
}

-(NSString *) accessModeledProperty{
  return [NSString stringWithFormat:@"\n isFault =%@ \n access numValue=%@ \n isFault=%@", [self isFault] ? @"YES":@"NO", self.num,[self isFault] ? @"YES":@"NO"];

}
@end

Then I created an object graph of Alpha object with a related Beta object. Then I restarted the app and ran a fetch of all Alpha objects. Then I logged the following:

id aa=[fetchedObjects objectAtIndex:0];
id bb=[[aa valueForKey:@"betas"] anyObject];

NSLog(@"aa isFault= %@",[aa isFault] ? @"YES":@"NO");
//=> aa isFault= NO

NSLog(@"\naa = %@",aa);
//=> aa = <Alpha: 0x63431b0> (entity: Alpha; id: 0x6342780 <x-coredata://752A19D9-2177-45A9-9722-61A40973B1BC/Alpha/p1> ; data: {
//=>  aString = "name 2";
//=>  betas =     (
//=>      "0x63454c0 <x-coredata://752A19D9-2177-45A9-9722-61A40973B1BC/Beta/p7>"
//=>  );
//=>  // ignore fetchedProperty = "<relationship fault: 0x6153300 'fetchedProperty'>";
//=>  num = 0;
//=> })

NSLog(@"\nbb isFault= %@",[bb isFault] ? @"YES":@"NO");
//=> bb isFault= YES

NSLog(@"\nany beta = %@",[[bb  class] description]);
//=> any beta = Beta

NSLog(@"\n-[Beta unmodeledMethod] =\n \n %@",[bb unmodeledMethod]);
//=> -[Beta unmodeledMethod] =
//=>  <Beta: 0x639de70> (entity: Beta; id: 0x639dbf0 <x-coredata://752A19D9-2177-45A9-9722-61A40973B1BC/Beta/p7> ; ...
//=>...data: <fault>) isFault=YES

NSLog(@"\n-[Beta accessModeledProperty] = \n %@",[bb accessModeledProperty]);
-[Beta accessModeledProperty] = 
//=> isFault =NO 
//=> access numValue=2 
//=> isFault=YES

NSLog(@"\nbb = %@",bb);
//=>bb = <Beta: 0x6029a80> (entity: Beta; id: 0x6029460 <x-coredata://752A19D9-2177-45A9-9722-61A40973B1BC/Beta/p7> ; data: {
//=>    alphas = "<relationship fault: 0x60290f0 'alphas'>";
//=>    num = 2;
//=>}) 

Note that:

  1. Both aa and bb are set to the expected class even though I did a generic object assignment. The context ensures that the fetch returns the proper class.
  2. Even bb's class is Beta it reports as a fault meaning that the object represents an instance of the Beta class but that none of it's modeled properties are populated.
  3. The bb object responds to the unmodeledMethod selector even though within the method it still reports as a fault.
  4. Accessing the modeled property of Beta.num converts bb from a fault even before the call is made (the compiler sets it to trigger) but as soon as the access is done it reverts back to a fault.
  5. The objects in the relationships are not only faults but not the same objects returned by accessing the relationship. In Alpha.betas the Beta object has the address of 0x63454c0 whereas bb has the address of 0x639de70> while it is a fault. After it converts from a fault and then back again, it's a address is 0x6029a80. However, the managedObjectID of all three objects is the same.

The morals here are:

  • "faults" are more about the state of a managed object and less about the actual class. Depending on how you access the object, you might get the actual subclass or you might get an instance of the hidden _NSFault… classes. From the coders perspective, all these different objects are interchangeable.
  • Even if a managed object reports as a fault, it will still respond to unmodeled selectors.
  • Accessing any modeled property causes the fault to fire and the object becomes fully active.
  • Core Data does a great deal of object swapping behind the scenes that you can't control and shouldn't worry about.

In short don't worry about unmodeled properties and methods. They should work transparently. It's best practice to use transient properties especially if those properties have side effects with modeled properties. You can force a context to track unmodeled properties but that can cause unnecessary complexity.

If you have doubts, just perform test yourself on faults to ensure that your class works.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!