Tweaking seaborn.boxplot

怎甘沉沦 提交于 2019-12-02 17:38:04
Lisa

Outlier display

You should be able to pass any arguments to seaborn.boxplot that you can pass to plt.boxplot (see documentation), so you could adjust the display of the outliers by setting flierprops. Here are some examples of what you can do with your outliers.

If you don't want to display them, you could do

seaborn.boxplot(x="centrality", y="score", hue="model", data=data,
                showfliers=False)

or you could make them light gray like so:

flierprops = dict(markerfacecolor='0.75', markersize=5,
              linestyle='none')
seaborn.boxplot(x="centrality", y="score", hue="model", data=data,
                flierprops=flierprops)

Order of groups

You can set the order of the groups manually with hue_order, e.g.

seaborn.boxplot(x="centrality", y="score", hue="model", data=data,
                hue_order=["original", "Havel..","etc"])

Scaling of y-axis

You could just get the minimum and maximum values of all y-values and set y_lim accordingly? Something like this:

y_values = data["scores"].values
seaborn.boxplot(x="centrality", y="score", hue="model", data=data,
                y_lim=(np.min(y_values),np.max(y_values)))

EDIT: This last point doesn't really make sense since the automatic y_lim range will already include all the values, but I'm leaving it just as an example of how to adjust these settings. As mentioned in the comments, log-scaling probably makes more sense.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!