What is the time complexity of indexing, inserting and removing from common data structures?

跟風遠走 提交于 2019-12-02 15:44:29

Information on this topic is now available on Wikipedia at: Search data structure

+----------------------+----------+------------+----------+--------------+
|                      |  Insert  |   Delete   |  Search  | Space Usage  |
+----------------------+----------+------------+----------+--------------+
| Unsorted array       | O(1)     | O(1)       | O(n)     | O(n)         |
| Value-indexed array  | O(1)     | O(1)       | O(1)     | O(n)         |
| Sorted array         | O(n)     | O(n)       | O(log n) | O(n)         |
| Unsorted linked list | O(1)*    | O(1)*      | O(n)     | O(n)         |
| Sorted linked list   | O(n)*    | O(1)*      | O(n)     | O(n)         |
| Balanced binary tree | O(log n) | O(log n)   | O(log n) | O(n)         |
| Heap                 | O(log n) | O(log n)** | O(n)     | O(n)         |
| Hash table           | O(1)     | O(1)       | O(1)     | O(n)         |
+----------------------+----------+------------+----------+--------------+

 * The cost to add or delete an element into a known location in the list (i.e. if you have an iterator to the location) is O(1). If you don't know the location, then you need to traverse the list to the location of deletion/insertion, which takes O(n) time. 
** The deletion cost is O(log n) for the minimum or maximum, O(n) for an arbitrary element.
Jose Vega

I guess I will start you off with the time complexity of a linked list:

Indexing---->O(n)
Inserting / Deleting at end---->O(1) or O(n)
Inserting / Deleting in middle--->O(1) with iterator O(n) with out

The time complexity for the Inserting at the end depends if you have the location of the last node, if you do, it would be O(1) other wise you will have to search through the linked list and the time complexity would jump to O(n).

Keep in mind that unless you're writing your own data structure (e.g. linked list in C), it can depend dramatically on the implementation of data structures in your language/framework of choice. As an example, take a look at the benchmarks of Apple's CFArray over at Ridiculous Fish. In this case, the data type, a CFArray from Apple's CoreFoundation framework, actually changes data structures depending on how many objects are actually in the array - changing from linear time to constant time at around 30,000 objects.

This is actually one of the beautiful things about object-oriented programming - you don't need to know how it works, just that it works, and the 'how it works' can change depending on requirements.

Red-Black trees:

  • Insert - O(log n)
  • Retrieve - O(log n)
  • Delete - O(log n)

Nothing as useful as this: Common Data Structure Operations:

Amortized Big-O for hashtables:

  • Insert - O(1)
  • Retrieve - O(1)
  • Delete - O(1)

Note that there is a constant factor for the hashing algorithm, and the amortization means that actual measured performance may vary dramatically.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!