keras error in fit method : expected model_2 to have shape (None, 252, 252, 1) but got array with shape (300, 128, 128, 3)

这一生的挚爱 提交于 2019-12-02 06:46:02

问题


I am building a image classifier for one-class classification in which i've used autoencoder.

While running this model I am getting this error by the line autoencoder_model.fit:

ValueError: Error when checking target: expected model_2 to have shape (None, 252, 252, 1) but got array with shape (300, 128, 128, 3)

num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')

labels[0:376]=0 
names = ['cats']

input_shape=img_data[0].shape

X_train, X_test = train_test_split(img_data, test_size=0.2, random_state=2)

inputTensor = Input(input_shape)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inputTensor)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded_data = MaxPooling2D((2, 2), padding='same')(x)

encoder_model = Model(inputTensor,encoded_data)

# at this point the representation is (4, 4, 8) i.e. 128-dimensional
encoded_input = Input((4,4,8))
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded_input)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_data = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder_model = Model(encoded_input,decoded_data)

autoencoder_input = Input(input_shape)
encoded = encoder_model(autoencoder_input)
decoded = decoder_model(encoded)
autoencoder_model = Model(autoencoder_input, decoded)
autoencoder_model.compile(optimizer='adadelta', enter code here`loss='binary_crossentropy')

autoencoder_model.fit(X_train, X_train,
        epochs=50,
        batch_size=32,
        validation_data=(X_test, X_test),
        callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

回答1:


As the auto-encoder tries to re-create the original images, it seems you are reconstructing an image with different dimensions than the original, due to the fact to have only two MaxPool2D layers in your encoder and three UpSampling2D layers in your decoder.

When the auto-encoder tries to evaluate the loss of the reconstruction, it runs into an error due to a dimension miss-match.

Use this for your encoder and let us know if it works:

inputTensor = Input(input_shape)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inputTensor)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded_data = MaxPooling2D((2, 2), padding='same')(x)

encoder_model = Model(inputTensor,encoded_data)


来源:https://stackoverflow.com/questions/47859737/keras-error-in-fit-method-expected-model-2-to-have-shape-none-252-252-1-b

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!