题意:
给出一个网格图类似于这样:
现在给出一个\(n*m\)大小的网格,之后会给出一些点,若某些点相连形成了如下的几个图案,那么就是不好的。
现在可以删去一些点,但删除每个点都有一些代价,问最终不出现上述图案的最小代价为多少。
思路:
初一看这图是什么乱七八糟的,但仔细观察能够发现它们的共性:对于蓝色的边两旁的格子,我们称为灰点;若有两个灰点相连,并且它们各自至少还连接了一个点,那么就是不合法的图案。
同时观察网格奇偶性,之后对网格奇偶染色。
然后初步思路为:源点连向所有白点,容量为白点权值;黑点向汇点连边,容量也为权值;然后中间为两两相连的灰点,权值为两者最小值。之后求个最小割就行了(相当于不存在一条白-灰-灰-黑的路径)。
但是这还有连边的细节需要分情况讨论一下,假设我们固定白点为起点,那么在不同行,灰点间的连边是不同的。
详见代码吧:
#include <bits/stdc++.h> #define MP make_pair #define fi first #define se second #define sz(x) (int)(x).size() #define all(x) (x).begin(), (x).end() //#define Local #ifdef Local #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0) void err() { std::cout << '\n'; } template<typename T, typename...Args> void err(T a, Args...args) { std::cout << a << ' '; err(args...); } #else #define dbg(...) #endif void pt() {std::cout << '\n'; } template<typename T, typename...Args> void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); } using namespace std; typedef long long ll; typedef pair<int, int> pii; //head const int N = 5e5 + 5; int c, r, n; int x[N], y[N], w[N], col[N]; #define INF 0x3f3f3f3f template <class T> struct Dinic{ struct Edge{ int v, next; T flow; Edge(){} Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {} }e[N << 1]; int head[N], tot; int dep[N]; void init() { memset(head, -1, sizeof(head)); tot = 0; } void adde(int u, int v, T w, T rw = 0) { e[tot] = Edge(v, head[u], w); head[u] = tot++; e[tot] = Edge(u, head[v], rw); head[v] = tot++; } bool BFS(int _S, int _T) { memset(dep, 0, sizeof(dep)); queue <int> q; q.push(_S); dep[_S] = 1; while(!q.empty()) { int u = q.front(); q.pop(); for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].v; if(!dep[v] && e[i].flow > 0) { dep[v] = dep[u] + 1; q.push(v); } } } return dep[_T] != 0; } T dfs(int _S, int _T, T a) { T flow = 0, f; if(_S == _T || a == 0) return a; for(int i = head[_S]; ~i; i = e[i].next) { int v = e[i].v; if(dep[v] != dep[_S] + 1) continue; f = dfs(v, _T, min(a, e[i].flow)); if(f) { e[i].flow -= f; e[i ^ 1].flow += f; flow += f; a -= f; if(a == 0) break; } } if(!flow) dep[_S] = -1; return flow; } T dinic(int _S, int _T) { T max_flow = 0; while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF); return max_flow; } }; Dinic <int> solver; map <int , int> mp[N]; const int dx[] = {1, -1, 0, 0}; const int dy[] = {0, 0, 1, -1}; void run() { for(int i = 1; i <= n; i++) { cin >> x[i] >> y[i] >> w[i]; mp[x[i]][y[i]] = i; if(y[i] % 2 == 0) { if(x[i] % 4 == 0 || x[i] % 4 == 3) col[i] = 2; else if((x[i] + y[i]) & 1) col[i] = 1; else col[i] = 0; } else { if(x[i] % 4 == 1 || x[i] % 4 == 2) col[i] = 2; else if((x[i] + y[i]) & 1) col[i] = 1; else col[i] = 0; } } solver.init(); dbg(mp[1][1]); int s = 0, t = n + 1; for(int i = 1; i <= n; i++) { if(col[i] == 1) solver.adde(s, i, w[i]); } for(int i = 1; i <= n; i++) { if(col[i] == 0) solver.adde(i, t, w[i]); } for(int i = 1; i <= n; i++) { if(col[i] == 2) continue; for(int j = 0; j < 4; j++) { int curx = x[i] + dx[j], cury = y[i] + dy[j]; int id = mp[curx][cury]; if(id > 0 && col[id] == 2) { if(col[i] == 0) { solver.adde(id, i, INF); } else { solver.adde(i, id, INF); } } } } for(int i = 1; i <= n; i++) { if(col[i] != 2) continue; int curx, cury; if(y[i] % 2) { curx = x[i] + 1, cury = y[i]; } else { curx = x[i] - 1, cury = y[i]; } int id = mp[curx][cury]; if(id > 0 && col[id] == 2) { solver.adde(i, id, min(w[id], w[i])); } } int ans = solver.dinic(0, t); cout << ans << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cout << fixed << setprecision(20); #ifdef Local freopen("../input.in", "r", stdin); freopen("../output.out", "w", stdout); #endif while(cin >> c >> r >> n) run(); return 0; }