I would like to process a huge order CSV file (5GB), with some metadata rows at the start of file. Header columns are represented in row 4 (starting with "h,") followed by another metadata row, describing optionality. Data rows start with "d,"
m,Version,v1.0
m,Type,xx
m,<OtherMetaData>,<...>
h,Col1,Col2,Col3,Col4,Col5,.............,Col100
m,Mandatory,Optional,Optional,...........,Mandatory
d,Val1,Val2,Val3,Val4,Val5,.............,Val100
Is it possible to skip a specified number of rows when loading the file and use 'inferSchema' option for DataSet?
Dataset<Row> df = spark.read()
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load("\home\user\data\20170326.csv");
Or do I need to define two different Datasets and use "except(Dataset other)" to exclude the dataset with rows to be ignored?
You can try setting the "comment" option to "m", effectively telling the csv reader to skip lines beginning with the "m" character.
df = spark.read()
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.option("comment", "m")
.load("\home\user\data\20170326.csv")
来源:https://stackoverflow.com/questions/43029020/apache-spark-dataframe-load-data-from-nth-line-of-a-csv-file