What's the (best) way to solve a pair of non linear equations using Python. (Numpy, Scipy or Sympy)
eg:
- x+y^2 = 4
- e^x+ xy = 3
A code snippet which solves the above pair will be great
for numerical solution, you can use fsolve:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve
from scipy.optimize import fsolve
import math
def equations(p):
x, y = p
return (x+y**2-4, math.exp(x) + x*y - 3)
x, y = fsolve(equations, (1, 1))
print equations((x, y))
If you prefer sympy you can use nsolve.
>>> nsolve([x+y**2-4, exp(x)+x*y-3], [x, y], [1, 1])
[0.620344523485226]
[1.83838393066159]
The first argument is a list of equations, the second is list of variables and the third is an initial guess.
Try this one, I assure you that it will work perfectly.
import scipy.optimize as opt
from numpy import exp
import timeit
st1 = timeit.default_timer()
def f(variables) :
(x,y) = variables
first_eq = x + y**2 -4
second_eq = exp(x) + x*y - 3
return [first_eq, second_eq]
solution = opt.fsolve(f, (0.1,1) )
print(solution)
st2 = timeit.default_timer()
print("RUN TIME : {0}".format(st2-st1))
->
[ 0.62034452 1.83838393]
RUN TIME : 0.0009331008900937708
FYI. as mentioned above, you can also use 'Broyden's approximation' by replacing 'fsolve' with 'broyden1'. It works. I did it.
I don't know exactly how Broyden's approximation works, but it took 0.02 s.
And I recommend you do not use Sympy's functions <- convenient indeed, but in terms of speed, it's quite slow. You will see.
from scipy.optimize import fsolve
def double_solve(f1,f2,x0,y0):
func = lambda x: [f1(x[0], x[1]), f2(x[0], x[1])]
return fsolve(func,[x0,y0])
def n_solve(functions,variables):
func = lambda x: [ f(*x) for f in functions]
return fsolve(func, variables)
f1 = lambda x,y : x**2+y**2-1
f2 = lambda x,y : x-y
res = double_solve(f1,f2,1,0)
res = n_solve([f1,f2],[1.0,0.0])
You can use openopt package and its NLP method. It has many dynamic programming algorithms to solve nonlinear algebraic equations consisting:
goldenSection, scipy_fminbound, scipy_bfgs, scipy_cg, scipy_ncg, amsg2p, scipy_lbfgsb, scipy_tnc, bobyqa, ralg, ipopt, scipy_slsqp, scipy_cobyla, lincher, algencan, which you can choose from.
Some of the latter algorithms can solve constrained nonlinear programming problem.
So, you can introduce your system of equations to openopt.NLP() with a function like this:
lambda x: x[0] + x[1]**2 - 4, np.exp(x[0]) + x[0]*x[1]
I got Broyden's method to work for coupled non-linear equations (generally involving polynomials and exponentials) in IDL, but I haven't tried it in Python:
scipy.optimize.broyden1
scipy.optimize.broyden1(F, xin, iter=None, alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)[source]Find a root of a function, using Broyden’s first Jacobian approximation.
This method is also known as “Broyden’s good method”.
An alternative to fsolve is root:
import numpy as np
from scipy.optimize import root
def your_funcs(X):
x, y = X
# all RHS have to be 0
f = [x + y**2 - 4,
np.exp(x) + x * y - 3]
return f
sol = root(your_funcs, [1.0, 1.0])
print(sol.x)
This will print
[0.62034452 1.83838393]
If you then check
print(your_funcs(sol.x))
you obtain
[4.4508396968012676e-11, -1.0512035686360832e-11]
confirming that the solution is correct.
来源:https://stackoverflow.com/questions/8739227/how-to-solve-a-pair-of-nonlinear-equations-using-python