Pytorch - Pick best probability after softmax layer

强颜欢笑 提交于 2019-12-01 23:56:39

问题


I have a logistic regression model using Pytorch 0.4.0, where my input is high-dimensional and my output must be a scalar - 0, 1 or 2.

I'm using a linear layer combined with a softmax layer to return a n x 3 tensor, where each column represents the probability of the input falling in one of the three classes (0, 1 or 2).

However, I must return a n x 1 tensor, so I need to somehow pick the highest probability for each input and create a tensor indicating which class had the highest probability. How can I achieve this using Pytorch?

To illustrate, my Softmax outputs this:

[[0.2, 0.1, 0.7],
 [0.6, 0.2, 0.2],
 [0.1, 0.8, 0.1]]

And I must return this:

[[2],
 [0],
 [1]]

回答1:


torch.argmax() is probably what you want:

import torch

x = torch.FloatTensor([[0.2, 0.1, 0.7],
                       [0.6, 0.2, 0.2],
                       [0.1, 0.8, 0.1]])

y = torch.argmax(x, dim=1)
print(y.detach())
# tensor([ 2,  0,  1])

# If you want to reshape:
y = y.view(1, -1)
print(y.detach())
# tensor([[ 2,  0,  1]])


来源:https://stackoverflow.com/questions/50776548/pytorch-pick-best-probability-after-softmax-layer

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!