I recently implemented Karatsuba Multiplication as a personal exercise. I wrote my implementation in Python following the pseudocode provided on wikipedia:
procedure karatsuba(num1, num2)
if (num1 < 10) or (num2 < 10)
return num1*num2
/* calculates the size of the numbers */
m = max(size_base10(num1), size_base10(num2))
m2 = m/2
/* split the digit sequences about the middle */
high1, low1 = split_at(num1, m2)
high2, low2 = split_at(num2, m2)
/* 3 calls made to numbers approximately half the size */
z0 = karatsuba(low1, low2)
z1 = karatsuba((low1+high1), (low2+high2))
z2 = karatsuba(high1, high2)
return (z2*10^(2*m2)) + ((z1-z2-z0)*10^(m2)) + (z0)
Here is my python implementation:
def karat(x,y):
if len(str(x)) == 1 or len(str(y)) == 1:
return x*y
else:
m = max(len(str(x)),len(str(y)))
m2 = m / 2
a = x / 10**(m2)
b = x % 10**(m2)
c = y / 10**(m2)
d = y % 10**(m2)
z0 = karat(b,d)
z1 = karat((a+b),(c+d))
z2 = karat(a,c)
return (z2 * 10**(2*m2)) + ((z1 - z2 - z0) * 10**(m2)) + (z0)
My question is about final merge of z0, z1, and z2.
z2 is shifted m digits over (where m is the length of the largest of two multiplied numbers).
Instead of simply multiplying by 10^(m), the algorithm uses *10^(2*m2)* where m2 is m/2.
I tried replacing 2*m2 with m and got incorrect results. I think this has to do with how the numbers are split but I'm not really sure what's going on.
Depending on your Python version you must or should replace / with the explicit floor division operator // which is the appropriate here; it rounds down ensuring that your exponents remain entire numbers.
This is essential for example when splitting your operands in high digits (by floor dividing by 10^m2) and low digits (by taking the residual modulo 10^m2) this would not work with a fractional m2.
It also explains why 2 * (x // 2) does not necessarily equal x but rather x-1 if x is odd.
In the last line of the algorithm 2 m2 is correct because what you are doing is giving a and c their zeros back.
If you are on an older Python version your code may still work because / used to be interpreted as floor division when applied to integers.
def karat(x,y):
if len(str(x)) == 1 or len(str(y)) == 1:
return x*y
else:
m = max(len(str(x)),len(str(y)))
m2 = m // 2
a = x // 10**(m2)
b = x % 10**(m2)
c = y // 10**(m2)
d = y % 10**(m2)
z0 = karat(b,d)
z1 = karat((a+b),(c+d))
z2 = karat(a,c)
return (z2 * 10**(2*m2)) + ((z1 - z2 - z0) * 10**(m2)) + (z0)
i have implemented the same idea but i have restricted to the 2 digit multiplication as the base case because i can reduce float multiplication in function
import math
def multiply(x,y):
sx= str(x)
sy= str(y)
nx= len(sx)
ny= len(sy)
if ny<=2 or nx<=2:
r = int(x)*int(y)
return r
n = nx
if nx>ny:
sy = sy.rjust(nx,"0")
n=nx
elif ny>nx:
sx = sx.rjust(ny,"0")
n=ny
m = n%2
offset = 0
if m != 0:
n+=1
offset = 1
floor = int(math.floor(n/2)) - offset
a = sx[0:floor]
b = sx[floor:n]
c = sy[0:floor]
d = sy[floor:n]
print(a,b,c,d)
ac = multiply(a,c)
bd = multiply(b,d)
ad_bc = multiply((int(a)+int(b)),(int(c)+int(d)))-ac-bd
r = ((10**n)*ac)+((10**(n/2))*ad_bc)+bd
return r
print(multiply(4,5))
print(multiply(4,58779))
print(int(multiply(4872139874092183,5977098709879)))
print(int(4872139874092183*5977098709879))
print(int(multiply(4872349085723098457,597340985723098475)))
print(int(4872349085723098457*597340985723098475))
print(int(multiply(4908347590823749,97098709870985)))
print(int(4908347590823749*97098709870985))
I tried replacing 2*m2 with m and got incorrect results. I think this has to do with how the numbers are split but I'm not really sure what's going on.
This goes to the heart of how you split your numbers for the recursive calls.
If you choose to use an odd n then n//2 will be rounded down to the nearest whole number, meaning your second number will have a length of floor(n/2) and you would have to pad the first with the floor(n/2) zeros.
Since we use the same n for both numbers this applies to both. This means if you stick to the original odd n for the final step, you would be padding the first term with the original n zeros instead of the number of zeros that would result from the combination of the first padding plus the second padding (floor(n/2)*2)
Your code and logic is correct, there is just issue with your base case. Since according to the algo a,b,c,d are 2 digit numbers you should modify your base case and keep the length of x and y equal to 2 in the base case.
The base case if len(str(x)) == 1 or len(str(y)) == 1: return x*y is incorrect. If you run either of the python code given in answers against large integers, the karat() function will not produce the correct answer.
To make the code correct, you need to change the base case to if len(str(x) < 3 or len(str(y)) < 3: return x*y.
Below is a modified implementation of Paul Panzer's answer that correctly multiplies large integers.
def karat(x,y):
if len(str(x)) < 3 or len(str(y)) < 3:
return x*y
n = max(len(str(x)),len(str(y))) // 2
a = x // 10**(n)
b = x % 10**(n)
c = y // 10**(n)
d = y % 10**(n)
z0 = karat(b,d)
z1 = karat((a+b), (c+d))
z2 = karat(a,c)
return ((10**(2*n))*z2)+((10**n)*(z1-z2-z0))+z0
来源:https://stackoverflow.com/questions/42324419/karatsuba-multiplication-implementation