tensorflow

AI人工智能顶级实战工程师 课程大纲

只谈情不闲聊 提交于 2020-11-08 08:26:02
课程名称 内容 阶段一、人工智能基础 — 高等数学必知必会 1.数据分析 "a. 常数e b. 导数 c. 梯度 d. Taylor e. gini系数 f. 信息熵与组合数 g. 梯度下降 h. 牛顿法" 2.概率论 "a. 微积分与逼近论 b. 极限、微分、积分基本概念 c. 利用逼近的思想理解微分,利用积分的方式理解概率 d. 概率论基础 e. 古典模型 f. 常见概率分布 g. 大数定理和中心极限定理 h. 协方差(矩阵)和相关系数 i. 最大似然估计和最大后验估计" 3.线性代数及矩阵 "a. 线性空间及线性变换 b. 矩阵的基本概念 c. 状态转移矩阵 d. 特征向量 e. 矩阵的相关乘法 f. 矩阵的QR分解 g. 对称矩阵、正交矩阵、正定矩阵 h. 矩阵的SVD分解 i. 矩阵的求导 j. 矩阵映射/投影" 4. 凸优化 "a. 凸优化基本概念 b. 凸集 c. 凸函数 d. 凸优化问题标准形式 e. 凸优化之Lagerange对偶化 f. 凸优化之牛顿法、梯度下降法求解" 阶段二、人工智能提升 — Python高级应用 1. 容器 "a. 列表:list b. 元组:tuple c. 字典: dict d. 数组: Array e. 切片 f. 列表推导式 g. 浅拷贝和深拷贝" 2. 函数 "a. lambda表达式 b. 递归函数及尾递归优化 c.

重磅盘点:过去8年中深度学习最重要的想法

好久不见. 提交于 2020-11-06 19:19:25
原文: Deep Learning’s Most Important Ideas[1] 作者 :Denny Britz(ML 研究员,Google Brain 前成员) 译者:REN 深度学习是一个瞬息万变的领域,层出不穷的论文和新思路可能会令人不知所措。即使是经验丰富的研究人员,也很难准确将研究成果传达给公司的公关部门,继而传达给大众。 对于初学者来说,理解和实现这些技术有利于打下坚实的理论基础,是入门的最佳方法。 在深度学习领域,很多技术都可以跨域多个应用领域,包括计算机视觉,自然语言,语音识别和强化学习等等。在计算机视觉领域使用过深度学习的人,可能很快就能将类似的技术应用到自然语言研究中,即使特定的网络结构有所不同,但其概念,实现方法和代码基本一致。 必须强调的是,本文侧重于计算机视觉,自然语言,语音识别和强化学习领域,但不会详细解释每种深度学习技术,用寥寥数百字解释清楚一篇几十页的论文是不现实的。另外还有一些不容易重现的重要研究,比如 DeepMind 的 AlphaGo 或 OpenAI 的 OpenAI Five(Dota 2 模型),涉及到巨大的工程和运算挑战,因此也不是讨论的重点。 这篇文章的目的,是回顾在深度学习领域影响深远的成果,概述每种技术及其历史背景,尽量引导深度学习新人接触多个领域的基础技术。它们是这个领域最值得信赖的基石,每一个技术都经过了无数次的引用