dijkstra

BZOJ 2346: [Baltic 2011]Lamp Dijkstra

社会主义新天地 提交于 2019-11-30 00:57:54
Code: #include <bits/stdc++.h> #define N 600 #define M 1000000 #define inf 1000000000 #define setIO(s) freopen(s".in","r",stdin) using namespace std; char str[N]; int id[N][N],tot,edges,s; int hd[M],to[M],nex[M],val[M],done[M],d[M]; void addedge(int u,int v,int c) { nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c; swap(u,v); nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c; } struct P { int u,dis; P(int u=0,int dis=0):u(u),dis(dis){} bool operator<(P b) const { return b.dis<dis; } }; priority_queue<P>q; void Dijkstra() { for(int i=0;i<M;++i) d[i]=inf; for(d[s]=0,q.push(P(s,0));

Java: Using a Fibonacci Heap for Implementing Dijkstra's Algorithm

岁酱吖の 提交于 2019-11-29 23:34:11
问题 New here, but have been lurking as a guest for quite some time :) Okay, so I've been trying to do Dijkstra's shortest path algorithm using a Fibonacci heap (in Java). After some search, I managed to stumble across two ready-made implementations representing a Fibonacci heap. The first implementation is rather beautifully well done and can be found here. The second implementation, seemingly less elegant, is here. Now, this all looks nice and well. However, I want to use one of those

Dijkstra算法详细(单源最短路径算法)

不打扰是莪最后的温柔 提交于 2019-11-29 22:30:04
介绍 对于 dijkstra 算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解 bfs和dfs ,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或许,你曾经感觉它很难,那么,这个时候正适合你重新认识它。 Dijkstra能是干啥的? Dijkstra是用来求单源最短路径的 就拿上图来说,假如直到的路径和长度已知,那么可以使用 dijkstra 算法计算 南京到图中所有节点的最短距离。 单源 什么意思? 从一个顶点出发,Dijkstra算法只能求一个顶点到其他点的最短距离而不能任意两点。 和 bfs 求的最短路径有什么区别? bfs 求的与其说是路径,不如说是 次数 。因为bfs他是按照队列一次一次进行加入相邻的点,而两点之间没有权值或者权值相等(代价相同)。处理的更多是偏向迷宫类的这种都是只能走邻居(不排除特例)。 Dijkstra在处理具体实例的应用还是很多的,因为具体的问题其实带权更多一些。 比如一个城市有多个乡镇,乡镇可能有道路,也可能没有,整个乡镇联通,如果想计算每个乡镇到a镇的最短路径,那么Dijkstra就派上了用场。 算法分析 对于一个算法,首先要理解它的 运行流程 。 对于一个Dijkstra算法而言,前提是它的前提条件和环境: 一个连通图,若干节点,节点可能有数值,但是 路径 一定有 权值 。并且路径

Understanding Time complexity calculation for Dijkstra Algorithm

可紊 提交于 2019-11-29 20:08:48
As per my understanding, I have calculated time complexity of Dijkstra Algorithm as big-O notation using adjacency list given below. It didn't come out as it was supposed to and that led me to understand it step by step. Each vertex can be connected to (V-1) vertices, hence the number of adjacent edges to each vertex is V - 1. Let us say E represents V-1 edges connected to each vertex. Finding & Updating each adjacent vertex's weight in min heap is O(log(V)) + O(1) or O(log(V)) . Hence from step1 and step2 above, the time complexity for updating all adjacent vertices of a vertex is E*(logV).

Fastest implementation for All-pairs shortest paths problem?

末鹿安然 提交于 2019-11-29 19:42:21
问题 I have a weighted graph 30k nodes 160k edges, no negative weights. I would like to compute all the shortest paths from all the nodes to the others. I think I cannot assume any particular heuristics to simplify the problem. I tried to use this Dijkstra C implementation http://compprog.wordpress.com/2007/12/01/one-source-shortest-path-dijkstras-algorithm/, that is for a single shortest path problem, calling the function dijkstras() for all my 30 nodes. As you can imagine, it takes ages. At the

POJ 2387 dijkstra+链式前向星+优先队列优化(模板)

筅森魡賤 提交于 2019-11-29 19:29:04
题目链接: >_> 题目: Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. Farmer John’s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1…N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation

Finding shortest values between the cities in a dataframe

无人久伴 提交于 2019-11-29 18:05:48
I have a dataframe with cities and distance between other cities from each city. My dataset looks like, df, From City City A City B City C City D City A 2166 577 175 City B 2166 1806 2092 City C 577 1806 653 City D 175 2092 653 im planning to visit all the cities, I am trying to find in which order by cities I can travel with the shortest distance. I want to end with a starting position. start point and end point should be same. Is there a way to find this shortest distance across all the cities, or any other approach is available. please help. 来源: https://stackoverflow.com/questions/50196539

数据结构与算法—单源最短路径dijkstra算法

a 夏天 提交于 2019-11-29 17:09:54
介绍 对于 dijkstra 算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解 bfs和dfs ,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或许,你曾经感觉它很难,那么,这个时候正适合你重新认识它。 Dijkstra能是干啥的? Dijkstra是用来求单源最短路径的 就拿上图来说,假如直到的路径和长度已知,那么可以使用 dijkstra 算法计算 南京到图中所有节点的最短距离。 单源 什么意思? 从一个顶点出发,Dijkstra算法只能求一个顶点到其他点的最短距离而不能任意两点。 和 bfs 求的最短路径有什么区别? bfs 求的与其说是路径,不如说是 次数 。因为bfs他是按照队列一次一次进行加入相邻的点,而两点之间没有权值或者权值相等(代价相同)。处理的更多是偏向迷宫类的这种都是只能走邻居(不排除特例)。 Dijkstra在处理具体实例的应用还是很多的,因为具体的问题其实带权更多一些。 比如一个城市有多个乡镇,乡镇可能有道路,也可能没有,整个乡镇联通,如果想计算每个乡镇到a镇的最短路径,那么Dijkstra就派上了用场。 算法分析 对于一个算法,首先要理解它的 运行流程 。 对于一个Dijkstra算法而言,前提是它的前提条件和环境: 一个连通图,若干节点,节点可能有数值,但是 路径 一定有 权值 。并且路径

Dijkstra algorithm optimization/caching

匆匆过客 提交于 2019-11-29 16:12:17
I have the following Dijkstra algorithm with 3 input variables (start, stop and time). It takes about 0.5-1s to complete. My hosting provider says it's using too much resources and I should implement some caching mechanism. My question is, how? Because I have 3 variables, if only one of them changes - the whole result is different (because I have some additional statements with time, nevermind). So how to implement some caching mechanism or do some optimisation? I have 1700 nodes . <?php require_once("../includes/db_connection.php"); ?> <?php require("../includes/functions.php"); ?> <?php

Dijkstra’s Shortest Path Algorithm / LeetCode 787. Cheapest Flights Within K Stops

限于喜欢 提交于 2019-11-29 13:16:17
Dijkstra’s Shortest Path Algorithm 实现详见: https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/ 需要注意的是,priority_queue并无法更新内部的元素,因此我们更新dist的同时,直接把新的距离加入pq即可。pq里虽然有outdated的dist,但是由于距离过长,他们并不会更新dist。 // If there is shorted path to v through u. if (dist[v] > dist[u] + weight) { // Updating distance of v dist[v] = dist[u] + weight; pq.push(make_pair(dist[v], v)); } 时间复杂度 O(ElogV) 787. Cheapest Flights Within K Stops 本题的实质是 Dijkstra’s Shortest Path Algorithm,只不过追加了一个约束条件step。 class Solution { public: typedef tuple<int,int,int> ti; // (dist,u,step) struct edge{ int