I often use B-splines for regression. Up to now I\'ve never needed to understand the output of bs in detail: I would just choose the model I was interested in, and
The matrix b
# 1 2 3
# [1,] 0.0000000 0.0000000 0.0000000
# [2,] 0.8270677 0.0000000 0.0000000
# [3,] 0.8198433 0.1801567 0.0000000
# [4,] 0.0000000 0.7286085 0.2713915
# [5,] 0.0000000 0.0000000 1.0000000
is actually just the matrix of the values of the three basis functions in each point of x, which should have been obvious to me since it's exactly the same interpretation as for a polynomial linear model. As a matter of fact, since the boundary knots are
bknots <- attr(b,"Boundary.knots")
# [1] 0.0 77.4
and the internal knots are
iknots <- attr(b,"knots")
# 33.33333% 66.66667%
# 13.30000 38.83333
then the three basis functions, as shown here, are:
knots <- c(bknots[1],iknots,bknots[2])
y1 <- c(0,1,0,0)
y2 <- c(0,0,1,0)
y3 <- c(0,0,0,1)
par(mfrow = c(1, 3))
plot(knots, y1, type = "l", main = "basis 1: b1")
plot(knots, y2, type = "l", main = "basis 2: b2")
plot(knots, b3, type = "l", main = "basis 3: b3")
Now, consider b[,1]
# 1
# [1,] 0.0000000
# [2,] 0.8270677
# [3,] 0.8198433
# [4,] 0.0000000
# [5,] 0.0000000
These must be the values of b1 in x <- c(0.0, 11.0, 17.9, 49.3, 77.4). As a matter of fact, b1 is 0 in knots[1] = 0 and 1 in knots[2] = 13.3000, meaning that in x[2] (11.0) the value must be 11/13.3 = 0.8270677, as expected. Similarly, since b1 is 0 for knots[3] = 38.83333, the value in x[3] (17.9) must be (38.83333-13.3)/17.9 = 0.8198433. Since x[4], x[5] > knots[3] = 38.83333, b1 is 0 there. A similar interpretation can be given for the other two columns.
Just a small correction to the excellent answer by @DeltaIV above (it looks like I can not comment.)
So in b1, when he calculated b1(x[3]), it should be (38.83333-17.9)/(38.83333-13.3)=0.8198433 by linear interpolation. Everything else is perfect.
Note b1 should look like this
\frac{t}{13.3}I(0<=t<13.3)+\frac{38.83333-t}{38.83333-13.3}I(13.3<=t<38.83333)