Creating my dataframe:
from pandas import *
arrays = [[\'bar\', \'bar\', \'baz\', \'baz\', \'foo\', \'foo\', \'qux\', \'qux\'],
[\'one\', \'two\', \'o
Use the set_levels method (new in version 0.13.0):
data.index.set_levels([[u'cat', u'dog', u'foo', u'qux'],
[u'one', u'two']], inplace=True)
yields
c1 c2
first second
cat one -0.289649 -0.870716
two -0.062014 -0.410274
dog one 0.030171 -1.091150
two 0.505408 1.531108
foo one 1.375653 -1.377876
two -1.478615 1.351428
qux one 1.075802 0.532416
two 0.865931 -0.765292
To remap a level based on a dict, you could use a function such as this:
def map_level(df, dct, level=0):
index = df.index
index.set_levels([[dct.get(item, item) for item in names] if i==level else names
for i, names in enumerate(index.levels)], inplace=True)
dct = {'bar':'cat', 'baz':'dog'}
map_level(data, dct, level=0)
Here's a runnable example:
import numpy as np
import pandas as pd
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = zip(*arrays)
index = pd.MultiIndex.from_tuples(tuples, names=['first','second'])
data = pd.DataFrame(np.random.randn(8,2),index=index,columns=['c1','c2'])
data2 = data.copy()
data.index.set_levels([[u'cat', u'dog', u'foo', u'qux'],
[u'one', u'two']], inplace=True)
print(data)
# c1 c2
# first second
# cat one 0.939040 -0.748100
# two -0.497006 -1.185966
# dog one -0.368161 0.050339
# two -2.356879 -0.291206
# foo one -0.556261 0.474297
# two 0.647973 0.755983
# qux one -0.017722 1.364244
# two 1.007303 0.004337
def map_level(df, dct, level=0):
index = df.index
index.set_levels([[dct.get(item, item) for item in names] if i==level else names
for i, names in enumerate(index.levels)], inplace=True)
dct = {'bar':'wolf', 'baz':'rabbit'}
map_level(data2, dct, level=0)
print(data2)
# c1 c2
# first second
# wolf one 0.939040 -0.748100
# two -0.497006 -1.185966
# rabbit one -0.368161 0.050339
# two -2.356879 -0.291206
# foo one -0.556261 0.474297
# two 0.647973 0.755983
# qux one -0.017722 1.364244
# two 1.007303 0.004337
The set_levels method was causing my new column names to be out of order. So I found a different solution that isn't very clean, but works well. The method is to print df.index (or equivalently df.columns) and then copy and paste the output with the desired values changed. For example:
print data.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second'])
data.index = MultiIndex(levels=[['new_bar', 'new_baz', 'new_foo', 'new_qux'],
['new_one', 'new_two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
We can have full control over names by editing the labels as well. For example:
data.index = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'],
['one', 'twooo', 'three', 'four',
'five', 'siz', 'seven', 'eit']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 3, 4, 5, 6, 7]],
names=['first', 'second'])
Note that in this example we have already done something like from pandas import MultiIndex or from pandas import *.