How to create a fractional factorial design in R?

前端 未结 3 632
粉色の甜心
粉色の甜心 2021-01-31 12:29

I\'m struggling to create a rather elaborate fractional factorial design using R.

(see http://en.wikipedia.org/wiki/Fractional_factorial_design)

I\'ve searched

相关标签:
3条回答
  • 2021-01-31 12:49

    Just to add to Andrie's answer. This is how we interpret strength of optimual design.

    Design efficiency is judged by Ge. It should be 1 or close to 1. Below links have some explanation and i referred the book "Design and Analysis of Experiments with R". Thought this might be useful for those who are looking for answer. Below are the source from which i got this information.

    https://stat.ethz.ch/pipermail/r-help/2007-October/143217.html

    Error in Hierarchical Bayesn in R : Bayesn Package

    0 讨论(0)
  • 2021-01-31 12:53

    I have used the package AlgDesign to generate fractional factorial designs:

    1. Generate the full factorial design using the function gen.factorial().
    2. Pass the results to optFederov() - this will try to find an optimum fractional design, using the Federov algorithm.

    The following code takes about 3 minutes to run on my Windows laptop. The example finds an approximate optimum fractional factorial design with 8 factors with 3, 4, 6 or 11 levels each, as you specified.

    Note that I use optFederov(..., approximate=TRUE) - this finds an approximate solution. On my machine, when I set approximate=FALSE the code takes too long to run and Windows throws a strop. You may wish to experiment with different settings.

    library(AlgDesign)
    
    levels.design = c(3,4,6,11,3,4,6,11)
    f.design <- gen.factorial(levels.design)
    
    fract.design <- optFederov(
            data=f.design,
            nTrials=sum(levels.design),
            approximate=TRUE)
    

    And the output:

    head(f.design)
    
      X1 X2 X3 X4 X5 X6 X7 X8
    1 -1 -3 -5 -5 -1 -3 -5 -5
    2  0 -3 -5 -5 -1 -3 -5 -5
    3  1 -3 -5 -5 -1 -3 -5 -5
    4 -1 -1 -5 -5 -1 -3 -5 -5
    5  0 -1 -5 -5 -1 -3 -5 -5
    6  1 -1 -5 -5 -1 -3 -5 -5
    
    
    fract.design
    $D
    [1] 6.813321
    
    $A
    [1] 0.375804
    
    $Ge
    [1] 0.998
    
    $Dea
    [1] 0.998
    
    $design
           Rep.. X1 X2 X3 X4 X5 X6 X7 X8
    1          1 -1 -3 -5 -5 -1 -3 -5 -5
    10         1 -1  3 -5 -5 -1 -3 -5 -5
    ...
    626475     1  1 -3 -5 -5  1  3  5  5
    627253     1 -1 -3  5  5  1  3  5  5
    
    $rows
     [1]      1     10     61    723    790   1596   2307   2314   2365   2374
    [11]   2376   7129   7140   7198   7849   7911   7918   7920   8713   8724
    [21]   9433   9504  48252  48301  48303  49105  49107  49114  49174  54660
    [31]  54711  56233  56304 570241 570963 571834 571836 572556 578151 579015
    [41] 617821 617823 619414 620127 620134 625618 626475 627253
    
    0 讨论(0)
  • 2021-01-31 13:01

    The D, A, I, G-optimal designs are all bounded designs(the designs are on the bounds of design space), I don't think the optimal design results are good at fitting response surface or surrogate model. Meanwhile, the optimal design is usually not orthogonal.

    0 讨论(0)
提交回复
热议问题