As an example, suppose, in Matlab, a Matrix a(2,3,2) like this:
a(:,:,1) =
1 2 3
4 5 6
a(:,:,2) =
7 8
This is intended as a suplement to @Divakar's answer.
In Octave I made x and a and saved them to a file
>> x=[1, 4, 2, 5, 3, 6, 7, 10, 8, 11, 9, 12]
>> a=reshape(x,2,3,2)
a =
ans(:,:,1) =
1 2 3
4 5 6
ans(:,:,2) =
7 8 9
10 11 12
I can flatten a with (same as your mex):
>> a(:).'
In numpy, with loadmat from scipy.io
In [564]: data = loadmat('test.mat')
In [566]: data['x']
Out[566]:
array([[ 1., 4., 2., 5., 3., 6., 7., 10., 8., 11., 9.,
12.]])
In [567]: data['a']
Out[567]:
array([[[ 1., 7.],
[ 2., 8.],
[ 3., 9.]],
[[ 4., 10.],
[ 5., 11.],
[ 6., 12.]]])
ravel with order 'F' displays the original flat x:
In [571]: data['a'].ravel(order='F')
Out[571]:
array([ 1., 4., 2., 5., 3., 6., 7., 10., 8., 11., 9., 12.])
To help keep track of shapes I prefer to make them all different. For example
>> x=0:23;
>> a=reshape(x,2,3,4);
and a displays as
ans(:,:,1) =
0 2 4
1 3 5
...
ans(:,:,4) =
18 20 22
19 21 23
It is showing 4 (2,3) matrices.
On the numpy side I get:
In [575]: data['a'].shape
Out[575]: (2, 3, 4)
In [577]: data['a']
Out[577]:
array([[[ 0., 6., 12., 18.],
[ 2., 8., 14., 20.],
[ 4., 10., 16., 22.]],
[[ 1., 7., 13., 19.],
[ 3., 9., 15., 21.],
[ 5., 11., 17., 23.]]])
This is 2 blocks of (3,4) shape.
In [579]: data['a'].ravel('F')
Out[579]:
array([ 0., 1., 2., 3., 4., 5., ..., 23.])
I see two key differences between numpy and MATLAB/Octave. Default order is different, but numpy lets you specify F. And display of 3d (and larger) arrays is different. There's in effect a different notion of 'planes' or blocks.
np.transpose changes the shape, strides, and order of an array, while keeping the same data base.
Applied to a, it produces a (4,3,2) array with order 'C':
In [580]: data['a'].T
Out[580]:
array([[[ 0., 1.],
[ 2., 3.],
[ 4., 5.]],
....
[[ 18., 19.],
[ 20., 21.],
[ 22., 23.]]])
In [581]: data['a'].T.ravel()
Out[581]:
array([ 0., 1., 2., 3., ...22., 23.])
The MATLAB display can be replicated with:
In [584]: for i in range(4):
...: print(data['a'][:,:,i])
...:
[[ 0. 2. 4.]
[ 1. 3. 5.]]
[[ 6. 8. 10.]
[ 7. 9. 11.]]
[[ 12. 14. 16.]
[ 13. 15. 17.]]
[[ 18. 20. 22.]
[ 19. 21. 23.]]
This bugs a lot of people going into NumPy/Python from MATLAB. So, in MATLAB, the indexing format is (column x row x dim3) and so on. With NumPy, it's (axis-0, axis-1, axis-2) and so on.
To show this schematically using a sample case on MATLAB :
>> a = reshape(1:27,[3,3,3]);
>> a
a(:,:,1) =
row
--------------->
1 4 7 | |
2 5 8 | col |
3 6 9 v |
a(:,:,2) = |
10 13 16 | dim3
11 14 17 |
12 15 18 |
a(:,:,3) = |
19 22 25 |
20 23 26 |
21 24 27 v
On NumPy :
In [62]: a = np.arange(27).reshape(3,3,3)
In [63]: a
Out[63]:
axis=2
---------->
array([[[ 0, 1, 2], | |
[ 3, 4, 5], | axis=1 |
[ 6, 7, 8]], v |
|
[[ 9, 10, 11], |
[12, 13, 14], | axis=0
[15, 16, 17]], |
|
[[18, 19, 20], |
[21, 22, 23], |
[24, 25, 26]]]) v
Let's try to correlate these dimensions and axes terminology for the 3D array case listed in the question between these two environments :
MATLAB NumPy
------------------
cols axis-1
rows axis-2
dim3 axis-0
Thus, to simulate the same behavior in NumPy as MATLAB, we need the axes in NumPy as : (1,2,0). Together with NumPy's way of storing elements starting from the last axis to the first one i.e. in reversed order, the required axes order would be (0,2,1).
To perform the permuting of axes that way, we could use np.transpose and thereafter use a flattening operation with np.ravel() -
a.transpose(0,2,1).ravel()
Sample run -
In [515]: a
Out[515]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
In [516]: a.transpose(0,2,1) # Permute axes
Out[516]:
array([[[ 1, 4],
[ 2, 5],
[ 3, 6]],
[[ 7, 10],
[ 8, 11],
[ 9, 12]]])
In [517]: a.transpose(0,2,1).ravel() # Flattened array
Out[517]: array([ 1, 4, 2, 5, 3, 6, 7, 10, 8, 11, 9, 12])