I am working with VOC2012 dataset. The input image is in PNG format which has a shape of (375, 500, 4) when I use imageio to open the image. When I use PIL to open the image
Your image is palletised, not RGB. Each pixel is represented by an 8-bit index into a palette. You can see this by looking at image.mode
which shows up as P
.
If you want an RGB image, use:
rgb = Image.open('bike.png').convert('RGB')
If you want and RGBA image with transparency, use:
RGBA = Image.open('bike.png').convert('RGBA')
However, there is no useful information in the alpha channel, so that seems pointless.
Regarding the pascal palette, you can get that via PIL like this:
im = Image.open('bike.png')
p = im.getpalette()
for i in range (256):
print(p[3*i:3*i+3])
[0, 0, 0]
[128, 0, 0]
[0, 128, 0]
[128, 128, 0]
[0, 0, 128]
[128, 0, 128]
[0, 128, 128]
[128, 128, 128]
[64, 0, 0]
[192, 0, 0]
[64, 128, 0]
[192, 128, 0]
[64, 0, 128]
[192, 0, 128]
[64, 128, 128]
[192, 128, 128]
[0, 64, 0]
[128, 64, 0]
[0, 192, 0]
[128, 192, 0]
[0, 64, 128]
[128, 64, 128]
[0, 192, 128]
[128, 192, 128]
[64, 64, 0]
[192, 64, 0]
[64, 192, 0]
[192, 192, 0]
[64, 64, 128]
[192, 64, 128]
[64, 192, 128]
[192, 192, 128]
[0, 0, 64]
[128, 0, 64]
[0, 128, 64]
[128, 128, 64]
[0, 0, 192]
[128, 0, 192]
[0, 128, 192]
[128, 128, 192]
[64, 0, 64]
[192, 0, 64]
[64, 128, 64]
[192, 128, 64]
[64, 0, 192]
[192, 0, 192]
[64, 128, 192]
[192, 128, 192]
[0, 64, 64]
[128, 64, 64]
[0, 192, 64]
[128, 192, 64]
[0, 64, 192]
[128, 64, 192]
[0, 192, 192]
[128, 192, 192]
[64, 64, 64]
[192, 64, 64]
[64, 192, 64]
[192, 192, 64]
[64, 64, 192]
[192, 64, 192]
[64, 192, 192]
[192, 192, 192]
[32, 0, 0]
[160, 0, 0]
[32, 128, 0]
[160, 128, 0]
[32, 0, 128]
[160, 0, 128]
[32, 128, 128]
[160, 128, 128]
[96, 0, 0]
[224, 0, 0]
[96, 128, 0]
[224, 128, 0]
[96, 0, 128]
[224, 0, 128]
[96, 128, 128]
[224, 128, 128]
[32, 64, 0]
[160, 64, 0]
[32, 192, 0]
[160, 192, 0]
[32, 64, 128]
[160, 64, 128]
[32, 192, 128]
[160, 192, 128]
[96, 64, 0]
[224, 64, 0]
[96, 192, 0]
[224, 192, 0]
[96, 64, 128]
[224, 64, 128]
[96, 192, 128]
[224, 192, 128]
[32, 0, 64]
[160, 0, 64]
[32, 128, 64]
[160, 128, 64]
[32, 0, 192]
[160, 0, 192]
[32, 128, 192]
[160, 128, 192]
[96, 0, 64]
[224, 0, 64]
[96, 128, 64]
[224, 128, 64]
[96, 0, 192]
[224, 0, 192]
[96, 128, 192]
[224, 128, 192]
[32, 64, 64]
[160, 64, 64]
[32, 192, 64]
[160, 192, 64]
[32, 64, 192]
[160, 64, 192]
[32, 192, 192]
[160, 192, 192]
[96, 64, 64]
[224, 64, 64]
[96, 192, 64]
[224, 192, 64]
[96, 64, 192]
[224, 64, 192]
[96, 192, 192]
[224, 192, 192]
[0, 32, 0]
[128, 32, 0]
[0, 160, 0]
[128, 160, 0]
[0, 32, 128]
[128, 32, 128]
[0, 160, 128]
[128, 160, 128]
[64, 32, 0]
[192, 32, 0]
[64, 160, 0]
[192, 160, 0]
[64, 32, 128]
[192, 32, 128]
[64, 160, 128]
[192, 160, 128]
[0, 96, 0]
[128, 96, 0]
[0, 224, 0]
[128, 224, 0]
[0, 96, 128]
[128, 96, 128]
[0, 224, 128]
[128, 224, 128]
[64, 96, 0]
[192, 96, 0]
[64, 224, 0]
[192, 224, 0]
[64, 96, 128]
[192, 96, 128]
[64, 224, 128]
[192, 224, 128]
[0, 32, 64]
[128, 32, 64]
[0, 160, 64]
[128, 160, 64]
[0, 32, 192]
[128, 32, 192]
[0, 160, 192]
[128, 160, 192]
[64, 32, 64]
[192, 32, 64]
[64, 160, 64]
[192, 160, 64]
[64, 32, 192]
[192, 32, 192]
[64, 160, 192]
[192, 160, 192]
[0, 96, 64]
[128, 96, 64]
[0, 224, 64]
[128, 224, 64]
[0, 96, 192]
[128, 96, 192]
[0, 224, 192]
[128, 224, 192]
[64, 96, 64]
[192, 96, 64]
[64, 224, 64]
[192, 224, 64]
[64, 96, 192]
[192, 96, 192]
[64, 224, 192]
[192, 224, 192]
[32, 32, 0]
[160, 32, 0]
[32, 160, 0]
[160, 160, 0]
[32, 32, 128]
[160, 32, 128]
[32, 160, 128]
[160, 160, 128]
[96, 32, 0]
[224, 32, 0]
[96, 160, 0]
[224, 160, 0]
[96, 32, 128]
[224, 32, 128]
[96, 160, 128]
[224, 160, 128]
[32, 96, 0]
[160, 96, 0]
[32, 224, 0]
[160, 224, 0]
[32, 96, 128]
[160, 96, 128]
[32, 224, 128]
[160, 224, 128]
[96, 96, 0]
[224, 96, 0]
[96, 224, 0]
[224, 224, 0]
[96, 96, 128]
[224, 96, 128]
[96, 224, 128]
[224, 224, 128]
[32, 32, 64]
[160, 32, 64]
[32, 160, 64]
[160, 160, 64]
[32, 32, 192]
[160, 32, 192]
[32, 160, 192]
[160, 160, 192]
[96, 32, 64]
[224, 32, 64]
[96, 160, 64]
[224, 160, 64]
[96, 32, 192]
[224, 32, 192]
[96, 160, 192]
[224, 160, 192]
[32, 96, 64]
[160, 96, 64]
[32, 224, 64]
[160, 224, 64]
[32, 96, 192]
[160, 96, 192]
[32, 224, 192]
[160, 224, 192]
[96, 96, 64]
[224, 96, 64]
[96, 224, 64]
[224, 224, 64]
[96, 96, 192]
[224, 96, 192]
[96, 224, 192]
[224, 224, 192]
Then, if you want to make the bicycle red, you can do:
# Load the image and make Numpy version
im = Image.open('bike.png')
n = np.array(im)
# Make all pixels belonging to bike (2) into red (palette index 9)
n[n==2] = 9
# Make all pixels not red (9) into grey (palette index 7)
n[n!=9] = 7
# Convert back into PIL palettised image and re-apply original palette
r = Image.fromarray(n,mode='P')
r.putpalette(im.getpalette())
r.save('result.png')
Keywords: Python, PIL, Pillow, image processing, palette, palette operations, masked image, mask, extract palette, apply palette.