My sample.
data=structure(list(add = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L,
I've added a piece of code that would solve your issue and a brief explanation of the error.
Updated code
data=structure(list(add = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("x",
"y"), class = "factor"), x1 = c(14L, 15L, 36L, 0L, 0L, 0L, 53L,
10L, 39L, 27L, 67L, 25L, 19L, 49L, 53L, 64L, 61L, 12L, 75L, 34L,
88L, 43L, 85L, 93L, 44L, 31L, 37L, 90L, 66L, 39L, 59L, 96L, 41L,
23L, 20L, 26L, 69L, 28L, 35L, 96L, 87L, 82L, 70L, 68L, 26L, 12L,
58L, 18L, 76L, 93L, 3L, 31L), group = structure(c(2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L), .Label = c("female", "male"), class = "factor")), .Names = c("add",
"x1", "group"), class = "data.frame", row.names = c(NA, -52L))
library(tidyverse)
library(data.table)
data %>%
group_by(add) %>%
mutate(group2 = rleid(group)) %>%
group_by(add, group, group2) %>%
mutate(MEAN = mean(x1[group=="male" & group2==1]),
Q25 = quantile(x1[group=="male" & group2==1], 0.25)) %>%
group_by(add) %>%
mutate(x1 = ifelse(group=="male" & group2==3 & x1 > unique(Q25[!is.na(Q25)]), unique(MEAN[!is.na(MEAN)]), x1),
x1 = ifelse(x1==0, NA, x1)) %>% # new code added
ungroup() %>%
select(-group2) %>%
data.frame()
Error explanation
You have to run the previous part of the code and in the end you just update the x1
column. You get that error because NA
values break the mean
and quantile
calculations you need to do.
An alternative way would be to update x1
in the beginning and then use na.rm=T
for your calculations.
For the new case you mentioned, where you start with NA
values for x1
try this:
data %>%
group_by(add) %>%
mutate(group2 = rleid(group)) %>%
group_by(add, group, group2) %>%
mutate(MEAN = mean(x1[group=="male" & group2==1], na.rm = T), ## extra code here ##
Q25 = quantile(x1[group=="male" & group2==1], 0.25, na.rm = T)) %>% ## extra code here ##
group_by(add) %>%
mutate(x1 = ifelse(group=="male" & group2==3 & x1 > unique(Q25[!is.na(Q25)]), unique(MEAN[!is.na(MEAN)]), x1))%>%
ungroup() %>%
select(-group2) %>%
data.frame()
For the new case (edit 2) you mentioned, first save the output of the previous code as data2
:
data2 = data %>% ...
And then run this:
data2 %>%
group_by(add) %>% # for each add value
mutate(group2 = rleid(group)) %>% # created group2
filter(group=="male" & group2==3) %>% # keep only male after female
summarise(SUM = sum(x1[row_number() <= 4])) # get sum of x1 for first 4 rows
# # A tibble: 2 x 2
# add SUM
# <fct> <dbl>
# 1 x 94.9
# 2 y 107.