I am familiar with the zoo function rollapply which allows you to do rolling computations on zoo or xts objects and you c
If I understand correctly, you can get the dates of your endpoints, then for each endpoint (i.e. using lapply or for), call rollapply using data up to that point.
getSymbols("SPY", src='yahoo', from='2012-01-01', to='2012-08-01')
idx <- index(SPY)[endpoints(SPY, 'months')]
out <- lapply(idx, function(i) {
as.xts(rollapplyr(as.zoo(SPY[paste0("/", i)]), 5,
function(x) coef(lm(x[, 4] ~ x[, 1]))[2], by.column=FALSE))
})
sapply(out, NROW)
#[1] 16 36 58 78 100 121 142 143
I temporarily coerce to zoo for the rollapplyr to make sure the rollapply.zoo method is being used (as opposed to the unexported rollapply.xts method), then coerce back to xts
You want period.apply(), or its convenience helper apply.monthly(), both in xts.
Example:
R> foo <- xts(1:100, order.by=Sys.Date()+0:99)
R> apply.monthly(foo, sum)
[,1]
2012-08-31 105
2012-09-30 885
2012-10-31 1860
2012-11-25 2200
R>
or equally
R> apply.monthly(foo, quantile)
0% 25% 50% 75% 100%
2012-08-31 1 4.25 7.5 10.75 14
2012-09-30 15 22.25 29.5 36.75 44
2012-10-31 45 52.50 60.0 67.50 75
2012-11-25 76 82.00 88.0 94.00 100
R>
just to prove that functions returning more than one value can be used too.
As an answer to "Is the zoo/xts conversion needed?": It isn't needed in this case, but rollapply won't work if you send it a dataframe, as I recently discovered from this StackOverflow answer