I am trying to solve the following inequality constraint:
Given time-series data for N stocks, I am trying to construct a portfolio weight vector to minimize the var
The 2-norm of weights doesn't make sense. It has to be the 1-norm. This is essentially a constraint on the leverage of the portfolio. 1-norm(w) <= 1.6 implies that the portfolio is at most 130/30 (Sorry for using finance language here). You want to read about quadratic cones though. w'COV w = w'L'Lw (Cholesky decomp) and hence w'Cov w = 2-Norm (Lw)^2. Hence you can introduce the linear constraint y - Lw = 0 and t >= 2-Norm(Lw) [This defines a quadratic cone). Now you minimize t. The 1-norm can also be replaced by cones as abs(x_i) = sqrt(x_i^2) = 2-norm(x_i). So introduce a quadratic cone for each element of the vector x.
This looks like a simple QP (Quadratic Programming) problem. It may be easier to use a QP solver instead of a general purpose NLP (NonLinear Programming) solver (no need for derivatives, functions etc.). R has a QP solver called quadprog. It is not totally trivial to setup a problem for quadprog, but here is a very similar portfolio example with complete R code to show how to solve this. It has the same objective (minimize risk), the same budget constraint and the lower and upper-bounds. The example just has an extra constraint that specifies a minimum required portfolio return.
Actually I misread the question: the second constraint is ||x|| <= C. I think we can express the whole model as:
This actually looks like a convex model. I could solve it with "big" solvers like Cplex,Gurobi and Mosek. These solvers support convex Quadratically Constrained problems. I also believe this can be formulated as a cone programming problem, opening up more possibilities.
Here is an example where I use package cccp in R. cccp stands for Cone Constrained Convex Problems and is a port of CVXOPT.