I would like to update the value in a table with values of the previous row, within groups, (and probably stop the updates on a given condition)
Here is an example:<
something like this ?
ddply(field, 'player', function(x) {
baseline <- x[x$time == 1, 'energy']
x$energy <- baseline
ind <- which(x$prospects < 0.27)
if (length(ind)) {
x[min(ind):nrow(x), 'energy'] <- 0
}
x
})
Probably there are better ways, but this is what came to my mind. This makes use of roll=TRUE
argument. The idea is to first set energy=0.0
where prospects < 0.27
:
field[prospects < 0.27, energy := 0.0]
Then, if we remove the NA values from field
, we can use roll=TRUE
by doing a join with all combinations as follows:
field[!is.na(energy)][CJ(c("a", "b"), 1:3), roll=TRUE][, prospects := field$prospects][]
# player time prospects energy
# 1: a 1 0.81 0.63
# 2: a 2 0.25 0.00
# 3: a 3 2.05 0.00
# 4: b 1 1.63 -0.28
# 5: b 2 2.20 -0.28
# 6: b 3 0.49 -0.28
We've to reset prospects
because the roll
changes it too. You could do it better, but you get the idea.
A variation, so that the roll is performed only on energy
column:
field[!is.na(energy)][CJ(c("a", "b"), 1:3), list(energy),
roll=TRUE][, prospects := field$prospects][]
Or it may be simpler to use na.locf
from package zoo
:
field[time == 1, energy := round(rnorm(2),2)]
field[prospects < 0.27, energy := 0.0]
require(zoo)
field[, energy := na.locf(energy, na.rm=FALSE)]
which works if the first row of each group is guaranteed to be non-NA, which it is here by construction. But if not, you can run na.locf by group, too :
field[, energy := na.locf(energy, na.rm=FALSE), by=player]