The ASP.NET runtime is meant for short work loads that can be run in parallel. I need to be able to schedule periodic events and background tasks that may or may not run for
This is a shot in the dark since I don't know what database you use, but I'd recommend you to consider dialog timers and activation. Assuming that most of the jobs have to do some data manipulation, and is likely that all have to do only data manipulation, leveraging activation and timers give an extremely reliable job scheduling solution, entirely embedded in the database (no need for an external process/service, not dependencies outside the database bounds like msdb), and is a solution that ensures scheduled jobs can survive restarts, failover events and even disaster recovery restores. Simply put, once a job is scheduled it will run even if the database is restored one week later on a different machine.
Have a look at Asynchronous procedure execution for a related example.
And if this is too radical, at least have a look at Using Tables as Queues since storing the scheduled items in the database often falls under the 'pending queue' case.
I tell you what I have do.
I have create a class called Atzenta that have a timer (1-2 second trigger). I have also create a table on my temporary database that keep the jobs. The table knows the jobID, other parameters, priority, job status, messages.
I can add, or delete a job on this class. When there is no action to be done the timer is stop. When I add a job, then the timer starts again. (the timer is a thread by him self that can do parallel work). I use the System.Timers and not other timers for this.
The jobs can have different priority.
Now let say that I place a job on this table using the Atzenta class. The next time that the timer is trigger is check the query on this table and find the first available job and just run it. No other jobs run until this one is end.
Every synchronize and flags are done from the table. In the table I have flags for every job that show if its |wait to run|request to run|run|pause|finish|killed|
All jobs are all ready known functions or class (eg the creation of statistics).
For stop and start, I use the global.asax and the Application_Start, Application_End to start and pause the object that keep the tasks. For example when I do a job, and I get the Application_End ether I wait to finish and then stop the app, ether I stop the action, notify the table, and start again on application_start.
So I say, Atzenta.RunTheJob(Jobs.StatisticUpdate, ProductID); and then I add this job on table, open the timer, and then on trigger this job is run and I update the statistics for the given product id.
I use a table on a database to synchronize many pools that run the same web app and in fact its work that way. With a common table the synchronize of the jobs is easy and you avoid 2 pools to run the same job at the same time.
On my back office I have a simple table view to see the status of all jobs.
Using the database as a state-keeping mechanism is a completely valid idea. How complex it will be depends on how far you want to take it. In many cases you will ended up pairing your database logic with a Windows service to achieve the desired result.
FWIW, it is typically not a good practice to manually use the thread pool inside an ASP.Net application, though (contrary to what you may read) it actually works quite nicely other than the huge caveat that you can't guarantee it will work.
So if you needed a background thread that examined the state of some object every 30 seconds and you didn't care if it fired every 30 seconds or 29 seconds or 2 minutes (such as in a long app pool recycle), an ASP.Net-spawned thread is a quick and very dirty solution.
Asynchronously fired callbacks (such as on the ASP.Net Cache object) can also perform a sort of "behind the scenes" role.
I have faced similar challenges and ultimately opted for a Windows service that uses a combination of building blocks for maximum flexibility. Namely, I use:
1) WCF with implementation-specific types OR
2) Types that are meant to transport and manage objects that wrap a job OR
3) Completely generic, serializable objects contained in a custom wrapper. Since they are just a binary payload, this allows any object to be passed to the service. Once in the service, the wrapper defines what should happen to the object (e.g. invoke a method, gather a result, and optionally make that result available for return).
Ultimately, the web site is responsible for querying the service about its state. This querying can be as simple as polling or can use asynchronous callbacks with WCF (though I believe this also uses some sort of polling behind the scenes).
I recommend that you have a look at Quartz.Net. It is open source and it will give you some ideas.