I had seen this test question on Pluralsight:
Given these sets:
x = {\'a\', \'b\', \'c\', \'d\'}
y = {\'c\', \'e\', \'f\'}
z = {\'a\', \'g\', \'h\',
The set operations you have mentioned are:
^ - symmetric difference (XOR):
Return a new set with elements in either the set or other but not both.
Example: {'1', '2', '3'} ^ {'2', '3', '4'} = {'1', '4'}
| - union (OR):
Return a new set with elements from the set and all others.
Example: {'1', '2', '3'} | {'2', '3', '4'} = {'1', '2', '3', '4'}
There are also other set operations in python:
& - intersection (AND):
Return a new set with elements common to the set and all others.
Example: {'1', '2', '3'} & {'2', '3', '4'} = {'2', '3'}
- - difference:
Return a new set with elements in the set that are not in the others.
Example: {'1', '2', '3'} - {'2', '3', '4'} = {'1'}
The order of precedence for these operations is -, &, ^, |, so in your example, we first apply ^:
>>> y^z
{'a', 'c', 'e', 'f', 'g', 'h', 'i'}
And then |:
>>> x|{'a', 'c', 'e', 'f', 'g', 'h', 'i'}
{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'}
The different outputs you describe are actually the same set, as sets are not ordered.
>>> {'c', 'h', 'f', 'd', 'b', 'i', 'g', 'a', 'e'} == {'a', 'd', 'h', 'f', 'b', 'g', 'e', 'c', 'i'}
True
Any order shown in the string representation of a set is an implementation detail and should not be relied upon as it will vary unpredictably, as you have found.