I have a pandas.DataFrame as follows:
df1 =
a b
0 1 2
1 3 4
I\'d like to make this three times to become:
I do not know if it is more efficient than your loop, but it easy enough to construct as:
Code:
pd.concat([df] * 3).sort_index()
Test Code:
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('ab'))
print(pd.concat([df] * 3).sort_index())
Results:
a b
0 1 2
0 1 2
0 1 2
1 3 4
1 3 4
1 3 4
You can use numpy.repeat with parameter scalar 3 and then add columns parameter to DataFrame constructor:
df = pd.DataFrame(np.repeat(df.values, 3, axis=0), columns=df.columns)
print (df)
a b
0 1 2
1 1 2
2 1 2
3 3 4
4 3 4
5 3 4
If really want duplicated index what can complicated some pandas functions like reindex which failed:
r = np.repeat(np.arange(len(df.index)), 3)
df = pd.DataFrame(df.values[r], df.index[r], df.columns)
print (df)
a b
0 1 2
0 1 2
0 1 2
1 3 4
1 3 4
1 3 4
You can use np.repeat
df = pd.DataFrame(np.repeat(df.values,[3,3], axis = 0), columns = df.columns)
You get
a b
0 1 2
1 1 2
2 1 2
3 3 4
4 3 4
5 3 4
Time testing:
%timeit pd.DataFrame(np.repeat(df.values,[3,3], axis = 0))
1000 loops, best of 3: 235 µs per loop
%timeit pd.concat([df] * 3).sort_index()
best of 3: 1.26 ms per loop
Numpy is definitely faster in most cases so no surprises there
EDIT: I am not sure if you would be looking for repeating indices but incase you do,
pd.DataFrame(np.repeat(df.values,3, axis = 0), index = np.repeat(df.index, 3), columns = df.columns)
Build a one dimensional indexer to slice both the the values array and index. You must take care of the index as well to get your desired results.
np.repeat on an np.arange to get the indexerr = np.arange(len(df)).repeat(3)
pd.DataFrame(df.values[r], df.index[r], df.columns)
a b
0 1 2
0 1 2
0 1 2
1 3 4
1 3 4
1 3 4
Not the fastest (not the slowest either) but the shortest solution so far.
#Build a index array and extract the rows to build the desired new df. This handles index and data all at once.
df.iloc[np.repeat(df.index,3)]
Out[270]: In [271]:
a b
0 1 2
0 1 2
0 1 2
1 3 4
1 3 4
1 3 4