Below is a snippet of my pivot table output in .csv format after using pandas pivot_table function:
Sub-Product 11/1/12 11/2/12 11/3/12 11/4/12 11/5/12 1
The tool you need is resample
, which implicitly uses groupby over a time period/frequency and applies a function like mean or sum.
Read data.
In [2]: df
Out[2]:
Sub-Product 11/1/12 11/2/12 11/3/12 11/4/12 11/5/12 11/6/12
GP Acquisitions 164 168 54 72 203 167
GP Applications 190 207 65 91 227 200
GPF Acquisitions 1124 1142 992 1053 1467 1198
GPF Applications 1391 1430 1269 1357 1855 1510
Set up a MultiIndex.
In [4]: df = df.reset_index().set_index(['index', 'Sub-Product'])
In [5]: df
Out[5]:
11/1/12 11/2/12 11/3/12 11/4/12 11/5/12 11/6/12
index Sub-Product
GP Acquisitions 164 168 54 72 203 167
Applications 190 207 65 91 227 200
GPF Acquisitions 1124 1142 992 1053 1467 1198
Applications 1391 1430 1269 1357 1855 1510
Parse the columns as proper datetimes. (They come in as strings.)
In [6]: df.columns = pd.to_datetime(df.columns)
In [7]: df
Out[7]:
2012-11-01 2012-11-02 2012-11-03 2012-11-04 \
index Sub-Product
GP Acquisitions 164 168 54 72
Applications 190 207 65 91
GPF Acquisitions 1124 1142 992 1053
Applications 1391 1430 1269 1357
2012-11-05 2012-11-06
index Sub-Product
GP Acquisitions 203 167
Applications 227 200
GPF Acquisitions 1467 1198
Applications 1855 1510
Resample the columns (axis=1
) weekly ('w'
), summing by week. (how='sum'
or how=np.sum
are both valid options here.)
In [10]: df.resample('w', how='sum', axis=1)
Out[10]:
2012-11-04 2012-11-11
index Sub-Product
GP Acquisitions 458 370
Applications 553 427
GPF Acquisitions 4311 2665
Applications 5447 3365