I am struggling with "out-of-sample" prediction using loess
. I get NA
values for new x that are outside the original sample. Can I get th
In addition to nico's answer: I would suggest to fit a gam
(which uses penalized regression splines) instead. However, extrapolation is not advisable if you don't have a model based on science.
x <- c(24,36,48,60,84,120,180)
y <- c(3.94,4.03,4.29,4.30,4.63,4.86,5.02)
lo <- loess(y~x, control=loess.control(surface = "direct"))
plot(x.all <- seq(3,200,3),
predict(object = lo,newdata = x.all),
type="l", col="blue")
points(x, y)
library(mgcv)
fit <- gam(y ~ s(x, bs="cr", k=7, fx =FALSE), data = data.frame(x, y))
summary(fit)
lines(x.all, predict(fit, newdata = data.frame(x = x.all)), col="green")
From the manual page of predict.loess
:
When the fit was made using surface = "interpolate" (the default), predict.loess will not extrapolate – so points outside an axis-aligned hypercube enclosing the original data will have missing (NA) predictions and standard errors
If you change the surface parameter to "direct" you can extrapolate values.
For instance, this will work (on a side note: after plotting the prediction, my feeling is that you should increase the span
parameter in the loess
call a little bit):
lo <- loess(y~x, control=loess.control(surface="direct"))
predict(lo, newdata=x.all)