I am very new to doing time series in Python and Prophet. I have a dataset with the variables article code, date and quantity sold. I am trying to forecast the quantity sold
I know this is old, but I faced a similar problem and this worked for me:
df = pd.read_csv('file.csv')
df = pd.DataFrame(df)
df = df.rename(columns={'Date of the document': 'ds', 'Quantity sold': 'y', 'Article bar code': 'Article'})
#I filter first Articles bar codes with less than 3 records to avoid errors as prophet only works for 2+ records by group
df = df.groupby('Article').filter(lambda x: len(x) > 2)
df.Article = df.Article.astype(str)
final = pd.DataFrame(columns=['Article','ds','yhat'])
grouped = df.groupby('client_id')
for g in grouped.groups:
group = grouped.get_group(g)
m = Prophet()
m.fit(group)
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
#I add a column with Article bar code
forecast['Article'] = g
#I concad all results in one dataframe
final = pd.concat([final, forecast], ignore_index=True)
final.head(10)
Separate your dataframe by articletype
and then try storing all your predicted values in a dictionary
def get_prediction(df):
prediction = {}
df = df.rename(columns={'Date of the document': 'ds','Quantity sold': 'y', 'Article bar code': 'article'})
list_articles = df2.article.unique()
for article in list_articles:
article_df = df2.loc[df2['article'] == article]
# set the uncertainty interval to 95% (the Prophet default is 80%)
my_model = Prophet(weekly_seasonality= True, daily_seasonality=True,seasonality_prior_scale=1.0)
my_model.fit(article_df)
future_dates = my_model.make_future_dataframe(periods=6, freq='MS')
forecast = my_model.predict(future_dates)
prediction[article] = forecast
return prediction
now the prediction will have forecasts for each type of article.