I am trying to do PCA on data frame with 5000 columns and 30 rows
Sample <- read.table(file.choose(), header=F,sep=\"\\t\")
Sample.scaled <- data.frame
Judging by the fact that sum(is.na(Sample.scaled))
comes out as 90
, when sum(is.na(Sample))
was 0
, it looks like you've got three constant columns.
Here's a randomly generated (reproducible) example, which gives the same error messages:
Sample <- matrix(rnorm(30 * 5000), 30)
Sample[, c(128, 256, 512)] <- 1
Sample <- data.frame(Sample)
Sample.scaled <- data.frame(apply(Sample, 2, scale))
> sum(is.na(Sample))
[1] 0
> sum(is.na(Sample.scaled))
[1] 90
# constant columns are "scaled" to NA.
> pca.Sample <- prcomp(Sample.scaled,retx=TRUE)
Error in svd(x, nu = 0) : infinite or missing values in 'x'
# 3 entire columns are entirely NA, so na.omit omits every row
> pca.Sample <- prcomp(na.omit(Sample.scaled),retx=TRUE)
Error in svd(x, nu = 0) : 0 extent dimensions
# can't scale the 3 constant columns
> pca.Sample <- prcomp(~.,center=TRUE,scale=TRUE,Sample, na.action=na.omit)
Error in prcomp.default(x, ...) :
cannot rescale a constant/zero column to unit variance
You could try something like:
Sample.scaled.2 <- data.frame(t(na.omit(t(Sample.scaled))))
pca.Sample.2 <- prcomp(Sample.scaled.2, retx=TRUE)
i.e. use na.omit
on the transpose to get rid of the NA
columns rather than rows.
Negative infinity values can be replaced after a log transform as below.
log_features <- log(data_matrix[,1:8])
log_features[is.infinite(log_features)] <- -99999