Background:
I have a sequence of contiguous, time-stamped data. The data-sequence has gaps in it where the data is not contiguous. I want create a
Okay, trying again. Achieving the optimal amount of laziness turns out to be a bit difficult in F#... On the bright side, this is somewhat more functional than my last attempt, in that it doesn't use any ref cells.
let groupBy cmp (sq:seq<_>) =
let en = sq.GetEnumerator()
let next() = if en.MoveNext() then Some en.Current else None
(* this function returns a pair containing the first sequence and a lazy option indicating the first element in the next sequence (if any) *)
let rec seqStartingWith start =
match next() with
| Some y when cmp start y ->
let rest_next = lazy seqStartingWith y // delay evaluation until forced - stores the rest of this sequence and the start of the next one as a pair
seq { yield start; yield! fst (Lazy.force rest_next) },
lazy Lazy.force (snd (Lazy.force rest_next))
| next -> seq { yield start }, lazy next
let rec iter start =
seq {
match (Lazy.force start) with
| None -> ()
| Some start ->
let (first,next) = seqStartingWith start
yield first
yield! iter next
}
Seq.cache (iter (lazy next()))
Ok, here's an answer I'm not unhappy with.
(EDIT: I am unhappy - it's wrong! No time to try to fix right now though.)
It uses a bit of imperative state, but it is not too difficult to follow (provided you recall that '!' is the F# dereference operator, and not 'not'). It is as lazy as possible, and takes a seq as input and returns a seq of seqs as output.
let N = 20
let data = // produce some arbitrary data with holes
seq {
for x in 1..N do
if x % 4 <> 0 && x % 7 <> 0 then
printfn "producing %d" x
yield x
}
let rec GroupBy comp (input:seq<_>) = seq {
let doneWithThisGroup = ref false
let areMore = ref true
use e = input.GetEnumerator()
let Next() = areMore := e.MoveNext(); !areMore
// deal with length 0 or 1, seed 'prev'
if not(e.MoveNext()) then () else
let prev = ref e.Current
while !areMore do
yield seq {
while not(!doneWithThisGroup) do
if Next() then
let next = e.Current
doneWithThisGroup := not(comp !prev next)
yield !prev
prev := next
else
// end of list, yield final value
yield !prev
doneWithThisGroup := true }
doneWithThisGroup := false }
let result = data |> GroupBy (fun x y -> y = x + 1)
printfn "Consuming..."
for group in result do
printfn "about to do a group"
for x in group do
printfn " %d" x