This is the two methods for creating a keras model, but the output shapes of the summary results of the two methods are different. Obviously, the former prints
I have used this method to solve this problem, I don't know if there is an easier way.
class subclass(Model):
def __init__(self):
...
def call(self, x):
...
def model(self):
x = Input(shape=(24, 24, 3))
return Model(inputs=[x], outputs=self.call(x))
if __name__ == '__main__':
sub = subclass()
sub.model().summary()
I guess that key point is the _init_graph_network method in the class Network, which is the parent class of Model. _init_graph_network will be called if you specify the inputs and outputs arguments when calling __init__ method.
So there will be two possible methods:
_init_graph_network method to build the graph of the model. and both methods need the input layer and output (required from self.call).
Now calling summary will give the exact output shape. However it would show the Input layer, which isn't a part of subclassing Model.
from tensorflow import keras
from tensorflow.keras import layers as klayers
class MLP(keras.Model):
def __init__(self, input_shape=(32), **kwargs):
super(MLP, self).__init__(**kwargs)
# Add input layer
self.input_layer = klayers.Input(input_shape)
self.dense_1 = klayers.Dense(64, activation='relu')
self.dense_2 = klayers.Dense(10)
# Get output layer with `call` method
self.out = self.call(self.input_layer)
# Reinitial
super(MLP, self).__init__(
inputs=self.input_layer,
outputs=self.out,
**kwargs)
def build(self):
# Initialize the graph
self._is_graph_network = True
self._init_graph_network(
inputs=self.input_layer,
outputs=self.out
)
def call(self, inputs):
x = self.dense_1(inputs)
return self.dense_2(x)
if __name__ == '__main__':
mlp = MLP(16)
mlp.summary()
The output will be:
Model: "mlp_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 16)] 0
_________________________________________________________________
dense (Dense) (None, 64) 1088
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 1,738
Trainable params: 1,738
Non-trainable params: 0
_________________________________________________________________
The way I solve the problem is very similar to what Elazar mensioned. Override the function summary() in the class subclass. Then you can directly call summary() while using model subclassing:
class subclass(Model):
def __init__(self):
...
def call(self, x):
...
def summary(self):
x = Input(shape=(24, 24, 3))
model = Model(inputs=[x], outputs=self.call(x))
return model.summary()
if __name__ == '__main__':
sub = subclass()
sub.summary()
had the same problem - fix it by 3 steps:
class MyModel(tf.keras.Model):
def __init__(self,input_shape=(32,32,1), **kwargs):
super(MyModel, self).__init__(**kwargs)
self.input_layer = tf.keras.layers.Input(input_shape)
self.dense10 = tf.keras.layers.Dense(10, activation=tf.keras.activations.softmax)
self.dense20 = tf.keras.layers.Dense(20, activation=tf.keras.activations.softmax)
self.out = self.call(self.input_layer)
def call(self, inputs):
x = self.dense10(inputs)
y_pred = self.dense20(x)
return y_pred
model = MyModel()
model(x_test[:99])
print('x_test[:99].shape:',x_test[:10].shape)
model.summary()
output:
x_test[:99].shape: (99, 32, 32, 1)
Model: "my_model_32"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_79 (Dense) (None, 32, 32, 10) 20
_________________________________________________________________
dense_80 (Dense) (None, 32, 32, 20) 220
=================================================================
Total params: 240
Trainable params: 240
Non-trainable params: 0