How to crop the biggest object in image with python opencv?

后端 未结 2 2103
情歌与酒
情歌与酒 2021-01-01 05:21

I want to crop the biggest object in the image (Characters). This code only works if there is no line (shown in the first image). But I need to ignore the line and make the

相关标签:
2条回答
  • 2021-01-01 05:30

    Python's findContours is your best option

        #use this only on grayscaled image
        thresh = cv2.threshold(yourImage, 40, 255, cv2.THRESH_BINARY)[1]
    
        # dilate the thresholded image to fill in holes, then find contours
        # on thresholded image
        thresh = cv2.dilate(thresh, None, iterations=2)
        (_,cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
            cv2.CHAIN_APPROX_SIMPLE)
    
        largest = max(cnts)
    
    0 讨论(0)
  • 2021-01-01 05:47

    You can use function findContours to do this.

    For example, like this:

    #!/usr/bin/env python
    
    import cv2
    import numpy as np
    
    # load image
    img = cv2.imread('Image.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
    # threshold to get just the signature (INVERTED)
    retval, thresh_gray = cv2.threshold(gray, thresh=100, maxval=255, \
                                       type=cv2.THRESH_BINARY_INV)
    
    image, contours, hierarchy = cv2.findContours(thresh_gray,cv2.RETR_LIST, \
                                       cv2.CHAIN_APPROX_SIMPLE)
    
    # Find object with the biggest bounding box
    mx = (0,0,0,0)      # biggest bounding box so far
    mx_area = 0
    for cont in contours:
        x,y,w,h = cv2.boundingRect(cont)
        area = w*h
        if area > mx_area:
            mx = x,y,w,h
            mx_area = area
    x,y,w,h = mx
    
    # Output to files
    roi=img[y:y+h,x:x+w]
    cv2.imwrite('Image_crop.jpg', roi)
    
    cv2.rectangle(img,(x,y),(x+w,y+h),(200,0,0),2)
    cv2.imwrite('Image_cont.jpg', img)
    

    Note that I used THRESH_BINARY_INV instead of THRESH_BINARY.

    Image_cont.jpg:

    Image_crop.jpg:


    You can also use this with skewed rectangles as @Jello pointed out. Unlike simpler solution above, this will correctly filter out diagonal lines.

    For example:

    #!/usr/bin/env python
    
    import cv2
    import numpy as np
    
    # load image
    img = cv2.imread('Image2.png')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
    # threshold to get just the signature (INVERTED)
    retval, thresh_gray = cv2.threshold(gray, 100, maxval=255, \
                                       type=cv2.THRESH_BINARY_INV)
    
    image, contours, hierarchy = cv2.findContours(thresh_gray,cv2.RETR_LIST, \
                                       cv2.CHAIN_APPROX_SIMPLE)
    
    def crop_minAreaRect(img, rect):
        # Source: https://stackoverflow.com/questions/37177811/
    
        # rotate img
        angle = rect[2]
        rows,cols = img.shape[0], img.shape[1]
        matrix = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
        img_rot = cv2.warpAffine(img,matrix,(cols,rows))
    
        # rotate bounding box
        rect0 = (rect[0], rect[1], 0.0)
        box = cv2.boxPoints(rect)
        pts = np.int0(cv2.transform(np.array([box]), matrix))[0]
        pts[pts < 0] = 0
    
        # crop and return
        return img_rot[pts[1][1]:pts[0][1], pts[1][0]:pts[2][0]]
    
    # Find object with the biggest bounding box
    mx_rect = (0,0,0,0)      # biggest skewed bounding box
    mx_area = 0
    for cont in contours:
        arect = cv2.minAreaRect(cont)
        area = arect[1][0]*arect[1][1]
        if area > mx_area:
            mx_rect, mx_area = arect, area
    
    # Output to files
    roi = crop_minAreaRect(img, mx_rect)
    cv2.imwrite('Image_crop.jpg', roi)
    
    box = cv2.boxPoints(mx_rect)
    box = np.int0(box)
    cv2.drawContours(img,[box],0,(200,0,0),2)
    cv2.imwrite('Image_cont.jpg', img)
    

    Image2.png (the input image):

    Image_cont.jpg:

    Image_crop.jpg:


    If you use opencv-python 4.x, change image, contours, hierarchy to just contours, hierarchy.

    0 讨论(0)
提交回复
热议问题