getting the opposite diagonal of a numpy array

后端 未结 3 1736
天命终不由人
天命终不由人 2020-12-30 19:26

So in numpy arrays there is the built in function for getting the diagonal indices, but I can\'t seem to figure out how to get the diagonal starting from the top right rathe

相关标签:
3条回答
  • 2020-12-30 20:16

    There is

    In [47]: np.diag(np.fliplr(array))
    Out[47]: array([ 4,  8, 12, 16, 20])
    

    or

    In [48]: np.diag(np.rot90(array))
    Out[48]: array([ 4,  8, 12, 16, 20])
    

    Of the two, np.diag(np.fliplr(array)) is faster:

    In [50]: %timeit np.diag(np.fliplr(array))
    100000 loops, best of 3: 4.29 us per loop
    
    In [51]: %timeit np.diag(np.rot90(array))
    100000 loops, best of 3: 6.09 us per loop
    
    0 讨论(0)
  • 2020-12-30 20:17

    Here are two ideas:

    step = len(array) - 1
    
    # This will make a copy
    array.flat[step:-step:step]
    
    # This will make a veiw
    array.ravel()[step:-step:step]
    
    0 讨论(0)
  • 2020-12-30 20:29

    Here is a simple way using numpy slicing. I personally find it not to hard on the eyes (but concede that fliplr is a little more descriptive!).

    Just to highlight this example's contribution to existing answers, I ran the same simple benchmark.

    In [1]: import numpy as np
    
    In [3]: X = np.random.randint(0, 10, (5, 5))
    
    In [4]: X
    Out[4]: 
    array([[7, 2, 7, 3, 7],
           [8, 4, 5, 9, 6],
           [0, 2, 9, 0, 4],
           [8, 2, 1, 0, 3],
           [3, 1, 0, 7, 0]])
    
    In [5]: Y = X[:, ::-1]
    
    In [6]: Z1 = np.diag(Y)
    
    In [7]: Z1
    Out[7]: array([7, 9, 9, 2, 3])
    

    Now to compare to the current fastest solution given.

    In [8]: step = len(X) - 1
    
    In [9]: Z2 = np.take(X, np.arange(step, X.size-1, step))
    
    In [10]: Z2
    Out[10]: array([7, 9, 9, 2, 3])
    
    In [11]: np.array_equal(Z1, Z2)
    Out[11]: True
    

    Benchmarks

    In [12]: %timeit np.diag(X[:, ::-1])
    1.92 µs ± 29.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
    
    In [13]: %timeit step = len(X) - 1; np.take(X, np.arange(step, X.size-1, step))
    2.21 µs ± 246 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
    

    Initial comparisons indicate that my solution is additionally linear in complexity, while using the second 'step' solution is not:

    In [14]: big_X = np.random.randint(0, 10, (10000, 10000))
    
    In [15]: %timeit np.diag(big_X[:, ::-1])
    2.15 µs ± 96.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
    
    In [16]: %timeit step = len(big_X) - 1; np.take(big_X, np.arange(step, big_X.size-1, step))
    100 µs ± 1.85 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    

    I generally use this method to either flip images (mirroring them), or to convert between opencv's format of (channels, height, width) to matplotlib's format of (height, width , channels). So for a three dimensional image, it'd simply be flipped = image[:, :, ::-1]. Of course you can generalise it to flip along any dimension, by putting the ::-1 part in the desired dimension.

    0 讨论(0)
提交回复
热议问题