Correlation coefficients and p values for all pairs of rows of a matrix

前端 未结 5 1186
北荒
北荒 2020-12-30 03:32

I have a matrix data with m rows and n columns. I used to compute the correlation coefficients between all pairs of rows using np.corrcoef:

相关标签:
5条回答
  • 2020-12-30 04:07

    The most consice way of doing it might be the buildin method .corr in pandas, to get r:

    In [79]:
    
    import pandas as pd
    m=np.random.random((6,6))
    df=pd.DataFrame(m)
    print df.corr()
              0         1         2         3         4         5
    0  1.000000 -0.282780  0.455210 -0.377936 -0.850840  0.190545
    1 -0.282780  1.000000 -0.747979 -0.461637  0.270770  0.008815
    2  0.455210 -0.747979  1.000000 -0.137078 -0.683991  0.557390
    3 -0.377936 -0.461637 -0.137078  1.000000  0.511070 -0.801614
    4 -0.850840  0.270770 -0.683991  0.511070  1.000000 -0.499247
    5  0.190545  0.008815  0.557390 -0.801614 -0.499247  1.000000
    

    To get p values using t-test:

    In [84]:
    
    n=6
    r=df.corr()
    t=r*np.sqrt((n-2)/(1-r*r))
    
    import scipy.stats as ss
    ss.t.cdf(t, n-2)
    Out[84]:
    array([[ 1.        ,  0.2935682 ,  0.817826  ,  0.23004382,  0.01585695,
             0.64117917],
           [ 0.2935682 ,  1.        ,  0.04363408,  0.17836685,  0.69811422,
             0.50661121],
           [ 0.817826  ,  0.04363408,  1.        ,  0.39783538,  0.06700715,
             0.8747497 ],
           [ 0.23004382,  0.17836685,  0.39783538,  1.        ,  0.84993082,
             0.02756579],
           [ 0.01585695,  0.69811422,  0.06700715,  0.84993082,  1.        ,
             0.15667393],
           [ 0.64117917,  0.50661121,  0.8747497 ,  0.02756579,  0.15667393,
             1.        ]])
    In [85]:
    
    ss.pearsonr(m[:,0], m[:,1])
    Out[85]:
    (-0.28277983892175751, 0.58713640696703184)
    In [86]:
    #be careful about the difference of 1-tail test and 2-tail test:
    0.58713640696703184/2
    Out[86]:
    0.2935682034835159 #the value in ss.t.cdf(t, n-2) [0,1] cell
    

    Also you can just use the scipy.stats.pearsonr you mentioned in OP:

    In [95]:
    #returns a list of tuples of (r, p, index1, index2)
    import itertools
    [ss.pearsonr(m[:,i],m[:,j])+(i, j) for i, j in itertools.product(range(n), range(n))]
    Out[95]:
    [(1.0, 0.0, 0, 0),
     (-0.28277983892175751, 0.58713640696703184, 0, 1),
     (0.45521036266021014, 0.36434799921123057, 0, 2),
     (-0.3779357902414715, 0.46008763115463419, 0, 3),
     (-0.85083961671703368, 0.031713908656676448, 0, 4),
     (0.19054495489542525, 0.71764166168348287, 0, 5),
     (-0.28277983892175751, 0.58713640696703184, 1, 0),
     (1.0, 0.0, 1, 1),
    #etc, etc
    
    0 讨论(0)
  • 2020-12-30 04:09

    I have encountered the same problem today.

    After half an hour of googling, I can't find any code in numpy/scipy library can help me do this.

    So I wrote my own version of corrcoef

    import numpy as np
    from scipy.stats import pearsonr, betai
    
    def corrcoef(matrix):
        r = np.corrcoef(matrix)
        rf = r[np.triu_indices(r.shape[0], 1)]
        df = matrix.shape[1] - 2
        ts = rf * rf * (df / (1 - rf * rf))
        pf = betai(0.5 * df, 0.5, df / (df + ts))
        p = np.zeros(shape=r.shape)
        p[np.triu_indices(p.shape[0], 1)] = pf
        p[np.tril_indices(p.shape[0], -1)] = p.T[np.tril_indices(p.shape[0], -1)]
        p[np.diag_indices(p.shape[0])] = np.ones(p.shape[0])
        return r, p
    
    def corrcoef_loop(matrix):
        rows, cols = matrix.shape[0], matrix.shape[1]
        r = np.ones(shape=(rows, rows))
        p = np.ones(shape=(rows, rows))
        for i in range(rows):
            for j in range(i+1, rows):
                r_, p_ = pearsonr(matrix[i], matrix[j])
                r[i, j] = r[j, i] = r_
                p[i, j] = p[j, i] = p_
        return r, p
    

    The first version use the result of np.corrcoef, and then calculate p-value based on triangle-upper values of corrcoef matrix.

    The second loop version just iterating over rows, do pearsonr manually.

    def test_corrcoef():
        a = np.array([
            [1, 2, 3, 4],
            [1, 3, 1, 4],
            [8, 3, 8, 5],
            [2, 3, 2, 1]])
    
        r1, p1 = corrcoef(a)
        r2, p2 = corrcoef_loop(a)
    
        assert np.allclose(r1, r2)
        assert np.allclose(p1, p2)
    

    The test passed, they are the same.

    def test_timing():
        import time
        a = np.random.randn(100, 2500)
    
        def timing(func, *args, **kwargs):
            t0 = time.time()
            loops = 10
            for _ in range(loops):
                func(*args, **kwargs)
            print('{} takes {} seconds loops={}'.format(
                func.__name__, time.time() - t0, loops))
    
        timing(corrcoef, a)
        timing(corrcoef_loop, a)
    
    
    if __name__ == '__main__':
        test_corrcoef()
        test_timing()
    

    The performance on my Macbook against 100x2500 matrix

    corrcoef takes 0.06608104705810547 seconds loops=10

    corrcoef_loop takes 7.585600137710571 seconds loops=10

    0 讨论(0)
  • 2020-12-30 04:13

    If you do not have to use pearson correlation coefficient, you can use the spearman correlation coefficient, as it returns both the correlation matrix and p-values (note that the former requires that your data is normally distributed, whereas the spearman correlation is a non-parametric measure, thus not assuming the normal distribution of your data). An example code:

    from scipy import stats
    import numpy as np
    
    data = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    print 'np.corrcoef:', np.corrcoef(data)
    cor, pval = stats.spearmanr(data.T)
    print 'stats.spearmanr - cor:\n', cor
    print 'stats.spearmanr - pval\n', pval
    
    0 讨论(0)
  • 2020-12-30 04:14

    this is exactly the same performance as the corrcoef in MATLAB:

    to have this function work, you will need to install pandas as well as scipy.

    # Compute correlation correfficients matrix and p-value matrix
    # Similar function as corrcoef in MATLAB
    # dframe: pandas dataframe
    def corrcoef(dframe):
    
        fmatrix = dframe.values
        rows, cols = fmatrix.shape
    
        r = np.ones((cols, cols), dtype=float)
        p = np.ones((cols, cols), dtype=float)
    
        for i in range(cols):
            for j in range(cols):
                if i == j:
                    r_, p_ = 1., 1.
                else:
                    r_, p_ = pearsonr(fmatrix[:,i], fmatrix[:,j])
    
                r[j][i] = r_
                p[j][i] = p_
    
        return r, p
    
    0 讨论(0)
  • 2020-12-30 04:20

    Sort of hackish and possibly inefficient, but I think this could be what you're looking for:

    import scipy.spatial.distance as dist
    
    import scipy.stats as ss
    
    # Pearson's correlation coefficients
    print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[0]))    
    
    # p-values
    print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[1]))
    

    Scipy's pdist is a very helpful function, which is primarily meant for finding Pairwise distances between observations in n-dimensional space.

    But it allows user defined callable 'distance metrics', which can be exploited to carry out any kind of pair-wise operation. The result is returned in a condensed distance matrix form, which can be easily changed to the square matrix form using Scipy's 'squareform' function.

    0 讨论(0)
提交回复
热议问题