Given a dataframe that looks like this:
A B
2005-09-06 5 -2
2005-09-07 -1 3
2005-09-08 4 5
2005-09-09 -8 2
2005-09-10 -2 -
Here's a really useful page about the pandas crosstab function:
http://chrisalbon.com/python/pandas_crosstabs.html
So I think for what you'd like to do you should use
import pandas as pd
pd.crosstab(data['A']>0, data['B']>0)
Hope that helps!
Let us call your dataframe data
. Try
a = data['A']>0
b = data['B']>0
data.groupby([a,b]).count()
Probably easiest to just use the pandas function crosstab
. Borrowing from Dyno Fu above:
import pandas as pd
from StringIO import StringIO
table = """dt A B
2005-09-06 5 -2
2005-09-07 -1 3
2005-09-08 4 5
2005-09-09 -8 2
2005-09-10 -2 -5
2005-09-11 -7 9
2005-09-12 2 8
2005-09-13 6 -5
2005-09-14 6 -5
"""
sio = StringIO(table)
df = pd.read_table(sio, sep=r"\s+", parse_dates=['dt'])
df.set_index("dt", inplace=True)
pd.crosstab(df.A > 0, df.B > 0)
Output:
B False True
A
False 1 3
True 3 2
[2 rows x 2 columns]
Also the table is usable if you want to do a Fisher exact test with scipy.stats
etc:
from scipy.stats import fisher_exact
tab = pd.crosstab(df.A > 0, df.B > 0)
fisher_exact(tab)
import pandas as pd
from StringIO import StringIO
table = """dt A B
2005-09-06 5 -2
2005-09-07 -1 3
2005-09-08 4 5
2005-09-09 -8 2
2005-09-10 -2 -5
2005-09-11 -7 9
2005-09-12 2 8
2005-09-13 6 -5
2005-09-14 6 -5
"""
sio = StringIO(table)
df = pd.read_table(sio, sep=r"\s+", parse_dates=['dt'])
df.set_index("dt", inplace=True)
a = df['A'] > 0
b = df['B'] > 0
df1 = df.groupby([a,b]).count()
print df1["A"].unstack()
output:
B False True
A
False 1 3
True 3 2
this is just lnanenok's answer and using unstack()
to make it more readable. credit should go to lanenok.