Is there a way to make numpy.argmin() as fast as min()?

后端 未结 3 1050
野性不改
野性不改 2020-12-30 00:08

I\'m trying to find the minimum array indices along one dimension of a very large 2D numpy array. I\'m finding that this is very slow (already tried speeding it up with bott

相关标签:
3条回答
  • 2020-12-30 00:27
    In [1]: import numpy as np
    
    In [2]: a = np.random.rand(3000, 16000)
    
    In [3]: %timeit a.min(axis=0)
    1 loops, best of 3: 421 ms per loop
    
    In [4]: %timeit a.argmin(axis=0)
    1 loops, best of 3: 1.95 s per loop
    
    In [5]: %timeit a.min(axis=1)
    1 loops, best of 3: 302 ms per loop
    
    In [6]: %timeit a.argmin(axis=1)
    1 loops, best of 3: 303 ms per loop
    
    In [7]: %timeit a.T.argmin(axis=1)
    1 loops, best of 3: 1.78 s per loop
    
    In [8]: %timeit np.asfortranarray(a).argmin(axis=0)
    1 loops, best of 3: 1.97 s per loop
    
    In [9]: b = np.asfortranarray(a)
    
    In [10]: %timeit b.argmin(axis=0)
    1 loops, best of 3: 329 ms per loop
    

    Maybe min is smart enough to do its job sequentially over the array (hence with cache locality), and argmin is jumping around the array (causing a lot of cache misses)?

    Anyway, if you're willing to keep randvals as a Fortran-ordered array from the start, it'll be faster, though copying into Fortran-ordered doesn't help.

    0 讨论(0)
  • 2020-12-30 00:31

    I was just hitting the same problem, and found the large difference in performance when axis 0 is selected for finding the minimum. As suggested, the problem seems to be related to internally copying the array.

    I devised a rather simple-minded workaround using Cython that simultaneously establishes the minimum values and their position in a 2D numpy array along a given axis. Note that for axis = 0, the algorithm works on an array of columns (maximum number specified by the constant blocksize - here set equivalent to 8 kByte of data) simultaneously to make good use of the cache:

    %%cython -c=-O2 -c=-march=native
    
    import numpy as np
    cimport numpy as np 
    cimport cython
    from libc.stdint cimport uint32_t
    
    @cython.boundscheck(False)
    @cython.wraparound(False)
    cdef void _minargmin_2d_64_axis_0(uint32_t[:] minloc, double[:] minimum, double[:, :] arr) nogil:
        """
        Find the minimum and argmin for a 2D array of 64-bit floats along axis 0
        Parameters:
        -----------
        arr: numpy_array, dtype=np.float64, shape=(m, n)
           The array for which the minima should be computed.
        minloc: numpy_array, dtype=np.uint32, shape=(n)
           Stores the rows where the minima occur for each column.
        minimum: numpy_array, dtype=np.float64, shape=(n)
           The minima along each column.
        """
    
        # Columns of the matrix are accessed in blocks to increase cache performance.
        # Specify the number of columns here:
    
        DEF blocksize = 1024
    
        cdef int i, j, k
        cdef double minim[blocksize]
        cdef uint32_t minimloc[blocksize]
    
        # Read blocks of data to make good use of the cache
    
        cdef int blocks
        blocks  = arr.shape[1] / blocksize
        remains = arr.shape[1] % blocksize
    
        for i in xrange(0, blocksize * blocks, blocksize):
    
            for k in xrange(blocksize):
                minim[k]    = arr[0, i + k]
                minimloc[k] = 0
    
            for j in xrange(1, arr.shape[0]):
    
                for k in xrange(blocksize):
    
                    if arr[j, i + k] < minim[k]:
                        minim[k] = arr[j, i + k]
                        minimloc[k] = j
    
            for k in xrange(blocksize):
                minimum[i + k] = minim[k]
                minloc[i + k]  = minimloc[k]
    
        # Work on the final 'incomplete' block
    
        i = blocksize * blocks
    
        for k in xrange(remains):
            minim[k]    = arr[0, i + k]
            minimloc[k] = 0
    
        for j in xrange(1, arr.shape[0]):
    
            for k in xrange(remains):
    
                if arr[j, i + k] < minim[k]:
                    minim[k] = arr[j, i + k]
                    minimloc[k] = j
    
        for k in xrange(remains):
            minimum[i + k] = minim[k]
            minloc[i + k]  = minimloc[k]
    
        # Done!
    
    
    @cython.boundscheck(False)
    @cython.wraparound(False)
    cdef void _minargmin_2d_64_axis_1(uint32_t[:] minloc, double[:] minimum, double[:, :] arr) nogil:
        """
        Find the minimum and argmin for a 2D array of 64-bit floats along axis 1
        Parameters:
        -----------
        arr: numpy_array, dtype=np.float64, shape=(m, n)
           The array for which the minima should be computed.
        minloc: numpy_array, dtype=np.uint32, shape=(m)
           Stores the rows where the minima occur for each row.
        minimum: numpy_array, dtype=np.float64, shape=(m)
           The minima along each row.
        """
        cdef int i
        cdef int j
        cdef double minim
        cdef uint32_t minimloc
    
        for i in xrange(arr.shape[0]):
            minim = arr[i, 0]
            minimloc = 0
    
            for j in xrange(1, arr.shape[1]):
                if arr[i, j] < minim:
                    minim = arr[i, j]
                    minimloc = j
    
            minimum[i] = minim
            minloc[i]  = minimloc
    
    
    @cython.boundscheck(False)
    @cython.wraparound(False)
    cdef void _minargmin_2d_32_axis_0(uint32_t[:] minloc, float[:] minimum, float[:, :] arr) nogil:
        """
        Find the minimum and argmin for a 2D array of 32-bit floats along axis 0
        Parameters:
        -----------
        arr: numpy_array, dtype=np.float32, shape=(m, n)
           The array for which the minima should be computed.
        minloc: numpy_array, dtype=np.uint32, shape=(n)
           Stores the rows where the minima occur for each column.
        minimum: numpy_array, dtype=np.float32, shape=(n)
           The minima along each column.
        """
    
        # Columns of the matrix are accessed in blocks to increase cache performance.
        # Specify the number of columns here:  
    
        DEF blocksize = 2048
    
        cdef int i, j, k
        cdef float minim[blocksize]
        cdef uint32_t minimloc[blocksize]
    
        # Read blocks of data to make good use of the cache
    
        cdef int blocks
        blocks  = arr.shape[1] / blocksize
        remains = arr.shape[1] % blocksize
    
        for i in xrange(0, blocksize * blocks, blocksize):
    
            for k in xrange(blocksize):
                minim[k]    = arr[0, i + k]
                minimloc[k] = 0
    
            for j in xrange(1, arr.shape[0]):
    
                for k in xrange(blocksize):
    
                    if arr[j, i + k] < minim[k]:
                        minim[k] = arr[j, i + k]
                        minimloc[k] = j
    
            for k in xrange(blocksize):
                minimum[i + k] = minim[k]
                minloc[i + k]  = minimloc[k]
    
        # Work on the final 'incomplete' block
    
        i = blocksize * blocks
    
        for k in xrange(remains):
            minim[k]    = arr[0, i + k]
            minimloc[k] = 0
    
        for j in xrange(1, arr.shape[0]):
    
            for k in xrange(remains):
    
                if arr[j, i + k] < minim[k]:
                    minim[k] = arr[j, i + k]
                    minimloc[k] = j
    
        for k in xrange(remains):
            minimum[i + k] = minim[k]
            minloc[i + k]  = minimloc[k]
    
        # Done!
    
    @cython.boundscheck(False)
    @cython.wraparound(False)
    cdef void _minargmin_2d_32_axis_1(uint32_t[:] minloc, float[:] minimum, float[:, :] arr) nogil:
        """
        Find the minimum and argmin for a 2D array of 32-bit floats along axis 1
        Parameters:
        -----------
        arr: numpy_array, dtype=np.float32, shape=(m, n)
           The array for which the minima should be computed.
        minloc: numpy_array, dtype=np.uint32, shape=(m)
           Stores the rows where the minima occur for each row.
        minimum: numpy_array, dtype=np.float32, shape=(m)
           The minima along each row.
        """
        cdef int i
        cdef int j
        cdef float minim
        cdef uint32_t minimloc
    
        for i in xrange(arr.shape[0]):
            minim = arr[i, 0]
            minimloc = 0
    
            for j in xrange(1, arr.shape[1]):
                if arr[i, j] < minim:
                    minim = arr[i, j]
                    minimloc = j
    
            minimum[i] = minim
            minloc[i]  = minimloc
    
    def Min_Argmin(array_2d, axis = 1):
        """
        Find the minima and corresponding locations (argmin) of a two-dimensional
        numpy array of floats along a given axis simultaneously, and returns them
        as a tuple of arrays (min_2d, argmin_2d).
    
        (Note: float16 arrays will be internally transformed to float32 arrays.)
        ----------
        array_2d: numpy_array, dtype=np.float32 or np.float64, shape=(m, n)
           The array for which the minima should be computed.
        axis : int, 0 or 1 (default) : 
            The axis along which minima are computed.
        min_2d: numpy_array, dtype=np.uint8, shape=(m) or shape=(n):
           The array where the minima along the given axis are stored.
        argmin_2d:
           The array storing the row/column where the minimum occurs.
        """
    
        # Sanity checks:
        if len(array_2d.shape) != 2:
            raise IndexError('Min_Argmin: Number of dimensions of array must be 2')
    
        if not (axis == 0 or axis == 1):
            raise ValueError('Min_Argmin: Invalid axis specified')
    
        arr_type = array_2d.dtype
    
        if not arr_type in ('float16', 'float32', 'float64'):
            raise ValueError('Min_Argmin: Not a float array')
    
        # Transform float16 arrays
        if arr_type == 'float16':
            array_2d = array_2d.astype(np.float32)
    
        # Run analysis
    
        if arr_type == 'float64':
    
            # Double accuracy
    
            min_array    = np.zeros(array_2d.shape[1 - axis], dtype = np.float64)
            argmin_array = np.zeros(array_2d.shape[1 - axis], dtype = np.uint32)
    
            if (axis == 0):
                _minargmin_2d_64_axis_0(argmin_array, min_array, array_2d)
    
            else:
                _minargmin_2d_64_axis_1(argmin_array, min_array, array_2d)
    
        else:
    
            # Single accuracy
    
            min_array    = np.zeros(array_2d.shape[1 - axis], dtype = np.float32)
            argmin_array = np.zeros(array_2d.shape[1 - axis], dtype = np.uint32)
    
            if (axis == 0):
                _minargmin_2d_32_axis_0(argmin_array, min_array, array_2d)
    
            else:
                _minargmin_2d_32_axis_1(argmin_array, min_array, array_2d)
    
            # Transform back to float16 type as necessary
    
            if arr_type == 'float16':
                min_array = min_array.astype(np.float16)
    
    
        # Return results
        return min_array, argmin_array
    

    The code can be placed and compiled in an IPython notebook cell after loading Cython support:

    %load_ext Cython
    

    and then called in the form:

    min_array, argmin_array = Min_Argmin(two_dim_array, axis = 0 or 1)
    

    Timing example:

    random_array = np.random.rand(20000, 20000).astype(np.float32)
    
    %timeit min_array, argmin_array = Min_Argmin(random_array, axis = 0)
    %timeit min_array, argmin_array = Min_Argmin(random_array, axis = 1)
    
    1 loops, best of 3: 405 ms per loop
    1 loops, best of 3: 307 ms per loop
    

    For comparison:

    %%timeit 
    min_array    = random_array.min(axis = 0)
    argmin_array = random_array.argmin(axis = 0)
    
    1 loops, best of 3: 10.3 s per loop
    
    %%timeit 
    min_array    = random_array.min(axis = 1)
    argmin_array = random_array.argmin(axis = 1)
    
    1 loops, best of 3: 423 ms per loop
    

    So, there is a significant speedup for axis = 0 (and still a small advantage for axis = 1, if one is interested in both minimum and location).

    0 讨论(0)
  • 2020-12-30 00:35

    I just took a look at the source code, and while I don't fully understand why things are being done the way they are, this is what happens:

    1. np.min is basically a call to np.minimum.reduce.

    2. np.argmin first moves the axis you want to operate on to the end of the shape tuple, then makes it a contiguous array, which of course triggers a copy of the full array unless the axis was the last one to begin with.

    Since a copy is being made, you can get creative and try to instantiate cheaper arrays:

    a = np.random.rand(1000, 2000)
    
    def fast_argmin_axis_0(a):
        matches = np.nonzero((a == np.min(a, axis=0)).ravel())[0]
        rows, cols = np.unravel_index(matches, a.shape)
        argmin_array = np.empty(a.shape[1], dtype=np.intp)
        argmin_array[cols] = rows
        return argmin_array
    
    In [8]: np.argmin(a, axis=0)
    Out[8]: array([230, 532, 815, ..., 670, 702, 989], dtype=int64)
    
    In [9]: fast_argmin_axis_0(a)
    Out[9]: array([230, 532, 815, ..., 670, 702, 989], dtype=int64)
    
    In [10]: %timeit np.argmin(a, axis=0)
    10 loops, best of 3: 27.3 ms per loop
    
    In [11]: %timeit fast_argmin_axis_0(a)
    100 loops, best of 3: 15 ms per loop
    

    I wouldn't go as far as calling the current implementation a bug, since there may be good reasons for numpy doing what it does the way it does it, but that this kind of trickery can speed up what should be a highly optimized function, strongly suggests that things could be done better.

    0 讨论(0)
提交回复
热议问题