I am having strange issues with dplyr and combination of group_by, mutate and ifelse. Consider the following data.frame
> df1
crawl.id group.id hits.dif
Wrap it all in as.numeric to force the output format so the NAs, which are logical by default, don't override the class of the output variable:
df1 %>%
group_by(group.id) %>%
mutate( hits.consumed = as.numeric(ifelse(hits.diff<=0,-hits.diff,0)) )
# crawl.id group.id hits.diff hits.consumed
#1 1 1 NA NA
#2 1 2 NA NA
#3 2 2 0 0
#4 1 3 NA NA
#5 1 3 NA NA
#6 1 3 NA NA
Pretty sure this is the same issue as here: Custom sum function in dplyr returns inconsistent results , as this result suggests:
out <- df1[1:2,] %>% mutate( hits.consumed = ifelse(hits.diff <= 0, -hits.diff, 0))
class(out$hits.consumed)
#[1] "logical"
out <- df1[1:3,] %>% mutate( hits.consumed = ifelse(hits.diff <= 0, -hits.diff, 0))
class(out$hits.consumed)
#[1] "numeric"