I can access elements of a named tuple by name as follows(*):
from collections import namedtuple
Car = namedtuple(\'Car\', \'color mileage\')
my_car = Car(\'
since python version 3.6 one could inherit from typing.NamedTuple
class HistoryItem(tp.NamedTuple):
inp: str
tsb: float
rtn: int
frequency: int = None
def __getitem__(self, item):
if isinstance(item, str):
return getattr(self, item)
return tp.NamedTuple.__getitem__(self, item)
# return super().__getitem__(item)
def get(self, item, default=None):
try:
return self[item]
except (KeyError, AttributeError):
return default
then both item[num]
or item["fld_name"]
will work
The 'getattr' answer works, but there is another option which is slightly faster.
idx = {name: i for i, name in enumerate(list(df), start=1)}
for row in df.itertuples(name=None):
example_value = row[idx['product_price']]
Make a dictionary mapping the column names to the row position. Call 'itertuples' with "name=None". Then access the desired values in each tuple using the indexes obtained using the column name from the dictionary.
idx = {name: i for i, name in enumerate(list(df), start=1)}
for row in df.itertuples(name=None):
example_value = row[idx['product_price']]
Note: Use start=0
in enumerate
if you call itertuples with index=False
Here is a working example showing both methods and the timing of both methods.
import numpy as np
import pandas as pd
import timeit
data_length = 3 * 10**5
fake_data = {
"id_code": list(range(data_length)),
"letter_code": np.random.choice(list('abcdefgz'), size=data_length),
"pine_cones": np.random.randint(low=1, high=100, size=data_length),
"area": np.random.randint(low=1, high=100, size=data_length),
"temperature": np.random.randint(low=1, high=100, size=data_length),
"elevation": np.random.randint(low=1, high=100, size=data_length),
}
df = pd.DataFrame(fake_data)
def iter_with_idx():
result_data = []
idx = {name: i for i, name in enumerate(list(df), start=1)}
for row in df.itertuples(name=None):
row_calc = row[idx['pine_cones']] / row[idx['area']]
result_data.append(row_calc)
return result_data
def iter_with_getaatr():
result_data = []
for row in df.itertuples():
row_calc = getattr(row, 'pine_cones') / getattr(row, 'area')
result_data.append(row_calc)
return result_data
dict_idx_method = timeit.timeit(iter_with_idx, number=100)
get_attr_method = timeit.timeit(iter_with_getaatr, number=100)
print(f'Dictionary index Method {dict_idx_method:0.4f} seconds')
print(f'Get attribute method {get_attr_method:0.4f} seconds')
Result:
Dictionary index Method 49.1814 seconds
Get attribute method 80.1912 seconds
I assume the difference is due to lower overhead in creating a tuple vs a named tuple and also lower overhead in accessing it by the index rather than getattr but both of those are just guesses. If anyone knows better please comment.
I have not explored how the number of columns vs number of rows effects the timing results.
Another way of accessing them can be:
field_idx = my_car._fields.index(field)
my_car[field_idx]
Extract index of the field and then use it to index the namedtuple.
You can use getattr
getattr(my_car, field)