Python sklearn - how to calculate p-values

前端 未结 2 1629
再見小時候
再見小時候 2020-12-28 08:56

This is probably a simple question but I am trying to calculate the p-values for my features either using classifiers for a classification problem or regressors for regressi

相关标签:
2条回答
  • 2020-12-28 09:31

    You can use statsmodels

    import statsmodels.api as sm
    logit_model=sm.Logit(y_train,X_train)
    result=logit_model.fit()
    print(result.summary())
    

    The results would be something like this

                               Logit Regression Results                           
    ==============================================================================
    Dep. Variable:                      y   No. Observations:               406723
    Model:                          Logit   Df Residuals:                   406710
    Method:                           MLE   Df Model:                           12
    Date:                Fri, 12 Apr 2019   Pseudo R-squ.:                0.001661
    Time:                        16:48:45   Log-Likelihood:            -2.8145e+05
    converged:                      False   LL-Null:                   -2.8192e+05
                                            LLR p-value:                8.758e-193
    ==============================================================================
                     coef    std err          z      P>|z|      [0.025      0.975]
    ------------------------------------------------------------------------------
    x1            -0.0037      0.003     -1.078      0.281      -0.010       0.003
    
    0 讨论(0)
  • 2020-12-28 09:40

    Just run the significance test on X, y directly. Example using 20news and chi2:

    >>> from sklearn.datasets import fetch_20newsgroups_vectorized
    >>> from sklearn.feature_selection import chi2
    >>> data = fetch_20newsgroups_vectorized()
    >>> X, y = data.data, data.target
    >>> scores, pvalues = chi2(X, y)
    >>> pvalues
    array([  4.10171798e-17,   4.34003018e-01,   9.99999996e-01, ...,
             9.99999995e-01,   9.99999869e-01,   9.99981414e-01])
    
    0 讨论(0)
提交回复
热议问题